Document Type : Original Article

Authors

Associate Professor, Department of Water Engineering,Department and Research Group of Drought and Climate Change, Faculty of Agriculture,University of Birjand, Birjand, Iran.

Abstract

Drought is one of the most damaging natural events, significantly impacting water resource planning due to its geographical dominance and prolonged duration. This study analyzed drought intensity and duration at Qaen meteorological station from 1998 to 2018 using the 12-month Standardized Precipitation Index (SPI). The correlation between drought severity and duration was assessed using Tau-Kendall (0.74) and Spearman (0.88) coefficients, indicating a strong relationship. Marginal probability distributions revealed that drought duration follows a normal distribution, while severity aligns with a log-normal distribution. Among various joint functions analyzed, the atmospheric joint function was identified as the most suitable model, with RMSE = 0.0924 and NSE = 0.996. This model enables accurate estimation of the probability and return periods of drought events, providing critical insights for integrated water resource management. These findings can support planners and stakeholders in developing strategies to mitigate drought impacts in the study area.

Keywords

Main Subjects

Bazrafshan, O., Zamani, H. & Shekari, M. (2020). A copula‐based index for drought analysis in arid and semi‐arid regions of Iran. Natural Resource Modeling, 33(1), e12237. https://doi.org/10.1111/nrm.12237.
Chen, L., & Guo, S. (2019). Copulas and its application in hydrology and water resources. Springer Singapore.
Das, J., Jha, S. & Goyal, M. K. (2020). Non-stationery and copula-based approach to assess the drought characteristics encompassing climate indices over the Himalayan states in India. Journal of Hydrology, 580, 124356. https://doi.org/10.1016/j. jhydrol.2019.124356.
Farrokhnia, A. & Morid, S. (2008). Analysis of drought severity and duration using Copula functions. 4th National Congress on Civil Engineering, 6-8 May [In Persian].
Joe, H. (1997). Multivariate models and multivariatedependence concepts. CRC press.
Loukas, A. & Vasiliades, L. (2004). Probabilistic analysis of drought spatiotemporal characteristics in Thessaly region, Greece. Natural Hazards and Earth System Science, 4, 719-731. https://doi. org/10.5194/nhess-4-719-2004.
Madadgar, S., & Moradkhani, H. (2013). Drought analysis under climate change using copula. Journal of Hydrologic Engineering, 18(7), 746-759. https://doi.org/10.1061/(ASCE)HE.1943-5584.000053.
Mesbahzadeh, T., Mirakbari, M., Mohseni Saravi, M., Soleimani Sardoo, F., & Miglietta, M. M. (2020). Meteorological drought analysis using copula theory and drought indicators under climate change scenarios (RCP). Meteorological Applications, 27(1). https://doi.org/10.1002/met.1856.
Mirabbasi, R., Anagnostou, E., Fakheri-Fard, A., Dinpashoh, Y. & Eslamian, S. (2013). Analysis of meteorological drought in northwest Iran using the Joint Defcit Index. Journal of Hydrology, 492, 35-48. https://doi.org/10.1016/j.jhydrol.2013.04.019.
Mirabbasi, R., Fakheri-Fard, A. & Dinpashoh, Y. (2012). Bivariate drought frequency analysis using the copula method. Theoretical and Applied Climatology, 108(1-2), 191-206. https:// doi.org/10.1007/s00704-011-0524-7.
Mishra, A., Singh, V. P. & Desai, V. (2009). Drought characterization: a probabilistic approach. Stoch Environment Research Risk A, 23(1), 41–55. https://doi.org/10.1007/s00477-007-0194-2.
Moradzadeh Rahmatabadi, S., Irandoust, M., & Mirabbasi Najafabadi, R. (2022). Bivariate Frequency Analysis of Rainfall Characteristics Using Archimedean Copula Functions (Case Study: Khanmirza Watershed in Chaharmahal and Bakhtiari Province). Journal of Water and Soil Resources Conservation, 11(3),59-75. [In Persian]. https://doi. org/10.30495/wsrcj.2022.19226
MotevaliBashi Naeini, E., Akhond Ali, A. M., Radmanesh, F., Sharif, M., & Abedi Koupaei, J. (2019). Zoning map of drought characteristics under climate change scenario using copula method in the Zayandeh Roud River Catchment. Irrigation Sciences and Engineering, 42(1), 145-160 [In Persian]. https://doi.org/10.22055/jise.2017.20611.1485.
Mousavi Nadoushani, S.S., Alimohammadi, S., Ahani, A., Behrouz, M., & Mousavi, S. M. (2017). Analysis of the frequency of the bivariate drought in the Qarasu-Gorganrood watershed using detailed functions. Journal of Water & Soil Protection Research, 25(4), 75-91. [In Persian]. https://doi.org/10.22069/jwsc.2018.14689.2964
Muntaseri, M., Amir Attai, b. & Rezaei, H. (2016). Copula-Based Regional Drought Analysis and Derivation of Severity-Area-Frequency Curve in Lake Urmia Basin, Water and soil journal, 31(4), 1260-1277. [In Persian]. https://doi.org/10.22067/jsw. v31i4.60382.
Murad Zadeh Rahmat-Abadi, S., Irandoost, M., & MirAbbasi, R. (2022). Bivariate Frequency Analysis of Rainfall Characteristics Using Archimedean Joint Functions (Case Study: Khanmirza Basin in Chaharmahal and Bakhtiari Province). Protection of water and soil resources (scientific research), 11(3), 59-75. [In Persian]. https://doi.org/10.30495/wsrcj.2022.19226
Naderi, K., Moghdasi, M., Shukri, A., & Ahmadi, F. (2021). Analyzing the effect of the length of the statistical period on the probability of drought using the detailed functions approach (case study: Arak synoptic station). Iran Water and Soil Research, 52(9), 2427-2440. [In Persian]. https://doi. org/10.22059/ijswr.2021.324692.668986
Omidi, M., Mohammadzadeh, M., & Murid, S. (2010). Probabilistic analysis of severity-duration of drought in Tehran province using detailed functions. Iran Water and Soil Research, 41(1), 95-101. [In Persian]. https://doi.org/20.1001.1.2008479.1389. 41.1.10.9
Sadegh, M., Ragno, E., & AghaKouchak, A. (2017). Multivariate C copula A analysis T toolbox (MvCAT): describing dependence and underlying uncertainty using a Bayesian framework. Water Resources Research, 53(6), 5166-5183. https:// doi.org/10.1002/2016WR020242.
Sajeev, A., Deb Barma, S., Mahesha, A., & Shiau, J. T. (2021). Bivariate drought characterization of two contrasting climatic regions in India using copula. Journal of Irrigation and Drainage Engineering, 147(3). https://doi.org/10.1061/(ASCE)  IR.1943-4774.0001536.
Salvadori, G., De Michele, C., Kottegoda, N. T., & Rosso, R. (2007). Extremes in nature: an approach using copulas (Vol. 56). Springer Science & Business Media.
Shiau, J.T. (2006). Fitting drought duration and severity with two-dimensional copulas. Water resources management, 20(5), 795-815.
Sklar, M. (1959). Functions de repartition an dimensions et leurs marges. Publ. inst. statist. univ.Paris, 8, 229-231.
Tosunoglu, F. & Kisi, O. (2016). Joint modeling of annual maximum drought severity and corresponding duration. Journal of Hydrology, 543: 406-422. https://doi.org/10.1016/j.jhydrol.2016.10.018.
Vicente-Serrano, S. M., & López-Moreno, J. I. (2005). Hydrological response to different time scales of climatological drought: an evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin. Hydrology and earth system sciences, 9(5), 523-533. https://doi. org/10.5194/hess-9-523-2005.
Won, J., Choi, J., Lee, O., & Kim, S. (2020). Copula-based Joint Drought Index using SPI and EDDI and its application to climate change. Science of the Total Environment, 744, 140701. https://doi.org/10.1016/j.scitotenv.2020.140701.
Zhang, L., & Singh, VP. (2006) Bivariate flood frequency analysis using the copula method. J Hydrologic Engineering, 11(2),150–164. https://doi. org/10.1061/(ASCE)1084-0699(2006)11:2(150).