Aadhar, S., & Mishra, V. (2020). On the projected decline in droughts over south Asia in CMIP6 multimodel Ensemble. Journal of Geophysical Research: Atmospheres, 125(20), e2020JD033587. https://doi. org/10.1029/2020JD033587
Ageta, Y., Naito, N., & IWATA, S. (2003). Glacier disribution in the Himalayas and glacier shrinkage from 1963 to 1993 in the Bhutan Himalayas. Bulletin of Glaciological Research, 20, 29-40.
AghaKouchak, A., Mirchi, A., Madani, K., Di Baldassarre, G., Nazemi, A., Alborzi, A., ... & Wanders, N. (2021). Anthropogenic drought: defnition, challenges, and opportunities. https://doi.org/10.1029/2019RG000683
Ahmed, N., Mahbub, R. B., Hossain, M. M., & Sujauddin, M. (2020). Context of traditional and co-management paradigms.
Journal of Tropical Fores Science, 32(1), 42–51.
https://www.jsor.org/sable/26872818
Bagale, D., Sigdel, M., & Aryal, D. (2021). Drought monitoring over Nepal for the las four decades and its connection with southern oscillation Index.
Water, 13(23), 3411.
https://doi.org/10.3390/W13233411
Baidya, S. K., Shresha, M. L., & Sheikh, M. M. (2008). Trends in daily climatic extremes of temperature and precipitation in Nepal. Journal of Hydrology and Meteorology, 5(1), 38–51.
Bajracharya, T. R., Acharya, S., & Ale, B. B. (2011). Changing climatic parameters and its possible impacts in hydropower generation in Nepal (A case sudy on Gandaki river basin). Journal of the Insitute of Engineering, 8(1–2), 160–173. https://doi. org/10.3126/JIE.V8I1-2.5108
Band, S. S., Karami, H., Jeong, Y. W., Moslemzadeh, M., Farzin, S., Chau, K. W., Bateni, S. M., & Mosavi, A. (2022). Evaluation of time series models in simulating different monthly scales of drought index for improving their forecas accuracy. Frontiers in Earth Science, 10, 839527.
https://doi.org/10.3389/FEART.2022.839527
Baniya, B., Tang, Q., Huang, Z., Sun, S., & Techato, K-a. (2018). Spatial and temporal variation of NDVI in response to climate change and the implication for carbon dynamics in Nepal.
Foress, 9(6), 329.
https://doi.org/10.3390/F9060329
Bashit, N., Risianti, N. S., & Ulfana, D. (2022). Drought assessment using remote sensing and geographic information sysems (GIS) techniques (Case sudy: Klaten disrict). International Journal of Geoinformatics, 18(5), 115–127. https:// doi.org/10.52939/ijg.v18i5.2393
Bayissa, Y.A. (2018). Developing an impact-based combined drought index for monitoring crop yield anomalies in the Upper Blue Nile Basin (Dissertation). Delft University of Technology.
Bernsein, L., Bosch, P., Canziani, O., Chen, Z., & Chris, R. (2008). IPCC, 2007: AR4 climate change 2007: synthesis report.
http://www.ipcc.ch/publications_and_data/ar4/syr/en/contents.html
Bisa, N., Mahat, D., Manandhar, S., Regmi, B., Panday, U. S., & Karki, S. (2021). Analyzing trend and pattern of agricultural drought: A case sudy of Karnali and Sudurpashchim provinces. Journal on Geoinformatics, Nepal, 20(1), 1–8. https:// doi.org/10.3126/NJG.V20I1.39470
Brown M.E., & Funk, C.C. (2005). A maxto-min technique for making projections of NDVI change in semi-arid Africa for food security early warning. In AGU Fall Meeting Absracts.
Central Bureau of Statisics (CBS). (2011). Nepal living sandards survey 2010/2011. Kathmandu: Central Bureau of Statisics.
Chaulagain, N. P., Nepal, M. S., & Hohmeyer, O. (2006). Impacts of climate change on water resources of Nepal, the physical and socioeconomic dimensions Gutachter (Dissertation). Flensburg University.
Chen, B., Xu, G., Coops, N. C., Ciais, P., Innes, J. L., Wang, G., Myneni, R. B., Wang, T., Krzyzanowski, J., Li, Q., Cao, L., & Liu, Y. (2014). Changes in vegetation photosynthetic activity trends across the Asia–Pacifc region over the las three decades.
Remote Sensing of Environment, 144, 28–41.
https://doi.org/10.1016/J. RSE.2013.12.018
Chen, H., & Sun, J. (2015). Changes in drought characterisics over China using the sandardized precipitation evapotranspiration index.
Journal of Climate, 28(13), 5430–5447.
https://doi.org/10.1175/JCLI-D-14-00707.1
Chhetri, R., Kumar, P., Pandey, V. P., Singh, R., & Pandey, S. (2020). Vulnerability assessment of water resources in Hilly Region of Nepal. Susainable Water Resources Management, 6(3), 34. https:// doi.org/10.1007/s40899-020-00391-x
Ciais, P., Reichsein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A. D., Friedlingsein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., … Valentini, R. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature. 437(7058), 529–533. https://doi. org/10.1038/nature03972
Cui, X., & Graf, H. F. (2009). Recent land cover changes on the Tibetan Plateau: A review. Climatic Change, 94(1–2), 47–61. https:// doi.org/10.1007/S10584-009-9556-8
Dahal, P., Shresha, N. S., Shresha, M. L., Krakauer, N. Y., Panthi, J., Pradhanang, S. M., Jha, A., & Lakhankar, T. (2016). Drought risk assessment in central Nepal: temporal and spatial analysis. Natural Hazards, 80(3), 1913–1932. https://doi. org/10.1007/S11069-015-2055-5
Dandekhya, S., England, M., Ghate, R., Goodrich, C., Nepal, S., Prakash, A., & Udas, P. (2017). The Gandaki basin: Maintaining livelihoods in the face of landslides, floods, and drought. In HI-AWARE Working Paper, 9.
Das, A. C., Shahriar, S. A., Chowdhury, M. A., Hossain, M. L., Mahmud, S., Tusar, M. K., Ahmed, R., & Salam, M. A. (2023). Assessment of remote sensing-based indices for drought monitoring in the north-wesern region of Bangladesh. Heliyon, 9(2), e13016.
https://doi.org/10.1016/j.heliyon.2023.e13016
Dhakal, K., Silwal, S., & Khanal, G. (2010). Assessment of climate change impacts on water resources and vulnerability in hills of Nepal. A Case Study on Dhare Khola Watershed of Dhading Disrict Submitted to National Adaptation Program of Action (NAPA) to Climate Change Minisry of Environment, Government of Nepal. https://www.climatenepal.org.np/sites/default/fles/doc_resources/bshooe6hnfs_3. pdf
Diego, R.T. , Martínez Izquierdo, M. E., Arquero Hidalgo, Á., & Sánchez Hernández, J. (2010). Drought esimation maps by means multidate landsat fused images. In: “30th EARSeL Symposium Remote Sensing for Science, Education, and Natural and Cultural Heritage”, 31 May-03 Jun 2010, París, Francia. https://oa.upm. es/34984/
Ecksein, D., Künzel, V., y & Schäfer, L. (2021). The global climate risk index 2021. Bonn: Germanwatch. Recuperado de. https:// bvearmb.do/handle/123456789/1306
Erdenetuya, M., Bulgan, D., & Erdenetsetseg, B. (2010). Drought monitoring and assessment using multi satellite data in Mongolia. 32nd Asian Conference on Remote Sensing, TSI-Climate Change.
Food and Agricultural Organization (FAO) (2017). International Seminar on Drought &Agriculture-Predict, Plan, Prepare: Stop Drought Becoming Famine. https://www. fao.org/3/bs902e/bs902e.pdf.
Fensholt, R., Horion, S., Tagesson, T., Ehammer, A., Grogan, K., Tian, F., Huber, S., Verbesselt, J., Prince, S. D., Tucker, C. J., & Rasmussen, K. (2015). Assessing drivers of vegetation changes in dry lands from time series of earth observation data. Remote Sensing and Digital Image Processing, 22, 183–202. https://doi. org/10.1007/978-3-319-15967-6_9
GAR. (2021). https://www.undrr.org/gar2021-drought. Retrieved.
Gautam, D. K., & Regmi, S. K. (2013). Recent trends in the onset and withdrawal of summer monsoon over Nepal. ECOPERSIA, 1(4), 353–367. http://ecopersia.modares. ac.ir/article-24-11752-en.html
Gentle, P., & Maraseni, T. N. (2012). Climate change, poverty and livelihoods: adaptation practices by rural mountain communities in Nepal. Environmental Science & Policy, 21, 24–34. https://doi. org/10.1016/J.ENVSCI.2012.03.007
Getahun, Y., Li, M., Chen, Y., & Yate, T. (2023). Drought characterization and severity analysis using GRACE-TWS and MODIS datasets: a case sudy from the Awash River Basin (ARB), Ethiopia. Journal of Water and Climate Change, 14(2), 516-542.
https://iwaponline.com/jwcc/article-absract/14/2/516/93369
Gu, Y., Brown, J. F., Verdin, J. P., Wardlow, B., Gu, Y., Brown, J. F., Verdin, J. P., & Wardlow, B. (2007). A fve-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34(6). https:// doi.org/10.1029/2006GL029127
Guha-Sapir, D., Hoyois, P., Wallemacq, P., & Below, R. (2017). Annual disaser satisical review 2016: the numbers and trends. https://www.preventionweb.net/publication/annual-disaser-satisical-review-2016-numbers-and-trends. Retireddate.
Gulácsi, A., & Kovács, F. (2018). Drought monitoring of fores vegetation using MODIS-based normalized difference drought index in Hungary. Hungarian Geographical Bulletin, 67(1), 29–42. https://doi. org/10.15201/HUNGEOBULL.67.1.3
Gurung, G. B., & Bhandari, D. (2009). Integrated approach to climate change adaptation. Journal of Fores and Livelihood, 8(1), 90–98. https://nepjol.info/index. php/JFL/article/view/1889
Haile, T. (1988). Causes and characterisics of drought in Ethiopia. Ethiopian Journal of Agricultural Sciences, 10 (1–2), 85-97.
Haitham, A., Supervisor, B., Károly, P., & János, R. (2021). Drought vulnerability and mitigation measures in Jordan based on spatio-temporal assessment of single and composite meteorological drought indices; [PHD dissertation]. Szeged, University of Szeged.
Hamal, K., Sharma, S., Baniya, B., Khadka, N., & Zhou, X. (2020). Inter-annual variability of winter precipitation over Nepal coupled with ocean-atmospheric patterns during 1987–2015.
Frontiers in Earth Science, 8, 511095.
https://doi.org/10.3389/FEART.2020.00161
Hisdal, H., Tallaksen, L., Peters, E., Stahl, K., & Zaidman, M. (2000). Assessment of regional impact of droughts in Europe (ARIDE). Technical Rep, 6, 15.
Hossain, M. L., & Li, J. (2021). Biomass partitioning of C3- and C4-dominated grasslands in response to climatic variability and climate extremes. Environmental Research Letters, 16(7), 074016. https://doi. org/10.1088/1748-9326/AC027A
Hossain, M. L., Li, J., Hoffmann, S., & Beierkuhnlein, C. (2022). Biodiversity showed positive effects on resisance but mixed effects on resilience to climatic extremes in a long-term grassland experiment. Science of the Total Environment, 827, 154322. https://doi.org/10.1016/J. SCITOTENV.2022.154322
Ichii, K., Kawabata, A., & Yamaguchi, Y. (2002). Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982-1990. International Journal of Remote Sensing, 23(18), 3873–3878. https:// doi.org/10.1080/01431160110119416
Intergovernmental Panel on Climate Change (IPCC). (2023). Climate change 2021–the physical science basis: working group I contribution to the Sixth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. Doi: 10.1017/9781009157896
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T. M., Bonin, C., Bruelheide, H., De Luca, E., Ebeling, A., Grifn, J. N., Guo, Q., Hautier, Y., Hector, A., Jentsch, A., Kreyling, J., Lanta, V., Manning, P., … Eisenhauer, N. (2015). Biodiversity increases the resisance of ecosysem productivity to climate extremes. Nature, 526(7574), 574–577.
https://doi.org/10.1038/NATURE15374
Jonathan, K. H., & Suvarna Raju, P. (2017). Temperature variations in three regions of sultanate of Oman. International Journal of Civil Engineering and Technology, 8(2), 173–181.
Jordaan, A., Bahta, Y. T., & Phatudi-Mphahlele, B. (2019). Ecological vulnerability indicators to drought: Case of communal farmers in Easern Cape, South Africa. Jamba:
Journal of Disaser Risk Studies, 11(1).
https://doi.org/10.4102/JAMBA. V11I1.591
Joshi, N., & Dongol, R. (2018). Severity of climate induced drought and its impact on migration: A sudy of Ramechhap disrict, Nepal. Tropical Agricultural Research, 29(2), 194–211.
Kafy, A. Al, Rahman, M. S., Faisal, A. Al, Hasan, M. M., & Islam, M. (2020). Modelling future land use land cover changes and their impacts on land surface temperatures in Rajshahi, Bangladesh. Remote Sensing Applications: Society and Environment, 18, 100314. https://doi. org/10.1016/J.RSASE.2020.100314
Kawabata, A., Ichii, K., & Yamaguchi, Y. (2001). Global monitoring of internal changes in vegetation activities using NDVI and its relationships to temperature and precipitation.
International Journal of Remote Sensing, 22(7), 1377–1382.
https://doi.org/10.1080/01431160119381
Khan, A.A, & Safdar, Q., & Khan, K. (2020). Occurrence pattern of meteorological droughts and associated problems in Cholisan region of Pakisan: A spatio-temporal view. Basic Research Journal of Agricultural Science and Review, 8(3). 38-51.
Khatiwada, K. R., & Pandey, V. P. (2019). Characterization of hydro-meteorological drought in Nepal Himalaya: A case of Karnali River Basin. Weather and Climate Extremes, 26, 100239. https://doi. org/10.1016/J.WACE.2019.100239
Liu, W. C., Bravo De Guenni, L., Lee, H., Tsun, J., Yang, H., Ndayiragije, J. M., & Li, F. (2022). Effectiveness of drought indices in the assessment of different types of droughts, managing and mitigating their effects. Climate, 10(9), 125. https:// doi.org/10.3390/CLI10090125
Liu, X., Wang, S., Zhou, Y., Wang, F., Li, W., & Liu, W. (2015). Regionalization and spatiotemporal variation of drought in China based on sandardized precipitation evapotranspiration index (1961-2013). Advances in Meteorology. https://doi. org/10.1155/2015/950262
Lotfrad, M., Esmaeili-Gisavandani, H., & Adib, A. (2022). Drought monitoring and prediction using SPI, SPEI, and random fores model in various climates of Iran.
Journal of Water and Climate Change, 13(2), 383–406.
https://doi.org/10.2166/WCC.2021.287
Luintel, N,. Ma W., Ma Y, Wang B., & Subba, S. (2019). Spatial and temporal variation of daytime and nighttime MODIS land surface temperature across Nepal.
Atmospheric and Oceanic Science Letters, 12(5), 305-312.
https://doi.org/10.1080/16742834.2019.1625701
Maharjan, A., Kochhar, I., Chitale, V. S., Hussain, A., & Gioli, G. (2020). Undersanding rural outmigration and agricultural land use change in the Gandaki Basin, Nepal.
Applied Geography, 124, 102278.
https://doi.org/10.1016/J.APGEOG.2020.102278
Maillard, O., Vides-Almonacid, R., Salazar, Á., & Larrea-Alcazar, D. M. (2022). Effect of deforesation on land surface temperature in the Chiquitania Region, Bolivia. Land, 12(1), 2.
https://doi.org/10.3390/LAND12010002
Mallick, D., Abbasi, S., Ali, M., Anwar, M., Batool, S., Bhadwal, S., & Varma, N. (2019). Participatory assessment of multiple socio-economic drivers and climate sresses leading to differentiated vulnerabilities in the Hindu Kush Himalaya; HIAWARE Working Paper 24.
Mao, K. B., Ma, Y., Tan, X. L., Shen, X. Y., Liu, G., Li, Z. L., Chen, J. M., & Xia, L. (2017). Global surface temperature change analysis based on MODIS data in recent twelve years. Advances in Space Research, 59(2), 503–512. https://doi. org/10.1016/J.ASR.2016.11.007
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi. org/10.1080/01431169608948714
McKee, T.B., Doesken, N.J., & Kleis, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology.
Mehta, D. J., & Yadav, S. M. (2023). Meteorological drought analysis in Pali district of Rajashan sate using standard precipitation index.
International Journal of Hydrology Science and Technology, 15(1), 1.
https://doi.org/10.1504/IJHST.2023.127880
Mehta, R. K., & Shah, S. C. (2012). Impact of climate change on water availability and food security of Nepal. Hydro Nepal:
Journal of Water, Energy and Environment, 59–63.
https://doi.org/10.3126/HN.V11I1.7206
Mishra, N. B., & Mainali, K. P. (2017). Greening and browning of the Himalaya: Spatial patterns and the role of climatic change and human drivers.
Science of the Total Environment, 587–588, 326–339.
https://doi.org/10.1016/J.SCITOTENV.2017.02.156
MOHA. (2009). National srategy for disaster risk management. https://www.fao. org/faolex/results/details/en/c/LEX-FAOC143046.
Mohammed, Y., Yimer, F., Tadesse, M., & Tesfaye, K. (2018). Meteorological drought assessment in north eas highlands of Ethiopia.
International Journal of Climate Change Strategies and Management, 10(1), 142–160.
https://doi.org/10.1108/IJCCSM-12-2016-0179
Mongkolsawat C, Wattanakij N, Kamchai T, Mongkolsawat K, Chuyakhai D. (2009). Exploration of spatio-temporal drought patterns using satellite-derived indices for crop management in Northeasern Thailand. In Proceedings of the 30th Asian Conference on Remote Sensing China.
Mool, P., Tao, C., & Bajracharya, S.R. (2004). Monitoring of glaciers and glacial lakes from 1970s to 2000 in Poiqu basin, Tibet. Autonomous Region PR China by ICIMOD, Kathmandu, Nepal
Nagendra, H., Sudhira, H. S., Katti, M., & Schewenius, M. (2013). Sub-regional assessment of India: Effects of urbanization on land use, biodiversity and ecosystem services. Urbanization, Biodiversity and Ecosysem Services: Challenges and Opportunities: A Global Assessment, 65–74.
https://doi.org/10.1007/978-94-007-7088-1_6
Natarajan, N., & Vasudevan, M. (2020). Trend analysis of meteorological parameters of Adelaide, South Ausralia. Environment Asia, 13(3), 103–117. https://doi. org/10.14456/EA.2020.46
Natarajan, N., Vasudevan, M., Raja, S. A., Mohanpradaap, K., Sneha, G., & Shanu, S. J. (2023). An assessment methodology for drought severity and vulnerability using precipitation-based indices for the arid, semi-arid and humid disricts of Tamil Nadu, India.
Water Supply, 23(1), 54–79.
https://doi.org/10.2166/WS.2022.415
Ndayiragije, J. M., & Li, F. (2022). Effectiveness of Drought Indices in the Assessment of Different Types of Droughts, Managing and Mitigating Their Effects. https://doi. org/10.3390/cli10090125
Nepal, S., Tripathi, S., & Adhikari, H. (2021). Geospatial approach to the risk assessment of climate-induced disasers (drought and erosion) and impacts on out-migration in Nepal. International Journal of Disaser Risk Reduction, 59, 102241. https://doi. org/10.1016/J.IJDRR.2021.102241
Nicholson, S. E., Tucker, C. J., & Ba, M. B. (1998). Desertifcation, drought, and surface vegetation: An example from the wes African Sahel. Bulletin of the American Meteorological Society, 79(5), 815–830. https://doi. g/10.1175/1520-0477(1998)079<0815:DDASVA>2.0.CO;2
Orimoloye, I. R., Mazinyo, S. P., Nel, W., & Kalumba, A. M. (2018). Spatiotemporal monitoring of land surface temperature and esimated radiation using remote sensing: human health implications for Eas London, South Africa. Environmental Earth Sciences, 77(3), 1–10.
https://doi.org/10.1007/S12665-018-7252-6
Orimoloye, I. R., Ololade, O. O., Mazinyo, S. P., Kalumba, A. M., Ekundayo, O. Y., Busayo, E. T., Akinsanola, A. A., & Nel, W. (2019). Spatial assessment of drought severity in Cape Town area, South Africa. Heliyon, 5(7), e02148. https://doi. org/10.1016/j.heliyon.2019.e02148
Ouyang, X., Chen, D., Feng, Y., & Lei, Y. (2019). Comparison of seasonal surface temperature trend, spatial variability, and elevation dependency from satellite-derived products and numerical simulations over the Tibetan Plateau from 2003 to 2011. International Journal of Remote Sensing, 40(5–6), 1844–1857. https://doi. org/10.1080/01431161.2018.1482024
Paniagua, M. T., Villalba, J., and Pasen, M. (2020). Spatial-temporal distribution of drought in the wesern region of Paraguay (2005–2017), Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci., XLII-3/W12-2020, 327–330, https:// doi.org/10.5194/isprs-archives-XLII-3-W12-2020-327-2020 .
Pant, R. R., Zhang, F., Rehman, F. U., Wang, G., Ye, M., Zeng, C., & Tang, H. (2018). Spatiotemporal variations of hydrogeochemisry and its controlling factors in the Gandaki River Basin, Central Himalaya Nepal. Science of the Total Environment, 622–623, 770–782. https://doi. org/10.1016/J.SCITOTENV.2017.12.063
Panthi, J., Dahal, P., Shresha, M. L., Aryal, S., Krakauer, N. Y., Pradhanang, S. M., Lakhankar, T., Jha, A. K., Sharma, M., & Karki, R. (2015). Spatial and temporal variability of rainfall in the Gandaki river basin of Nepal Himalaya.
Climate, 3(1), 210–226.
https://doi.org/10.3390/CLI3010210
Park, S., Im, J., Jang, E., & Rhee, J. (2016). Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions.
Agricultural and Fores Meteorology, 216, 157–169.
https://doi.org/10.1016/J.AGRFORMET.2015.10.011
Paudel, B., Wang, Z., Zhang, Y., Rai, M. K., & Paul, P. K. (2021). Climate change and its impacts on farmer’s livelihood in different physiographic regions of the Trans-Boundary Koshi river basin, Central Himalayas. International Journal of Environmental Research and Public Health, 18(13), 7142. https://doi. org/10.3390/IJERPH18137142
Qin, J., Yang, K., Liang, S., & Guo, X. (2009). The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Climatic Change, 97(1), 321–327. https:// doi.org/10.1007/S10584-009-9733-9
Radmanesh, F., Esmaeili-Gisavandani, H., & Lotfrad, M. (2022). Climate change impacts on the shrinkage of Lake Urmia. Journal of Water and Climate Change, 13(6), 2255–2277. https://doi. org/10.2166/WCC.2022.300
Rahaman, K. M., Ahmed, F. R. S., & Nazrul Islam, M. (2016). Modeling on climate induced drought of north-wesern region, Bangladesh. Modeling Earth Sysems and Environment, 2(1), 1–21. https://doi. org/10.1007/S40808-016-0089-7 .
Rai, R., Zhang, Y., Paudel, B., Acharya, B. K., & Basnet, L. (2018). Land use and land cover dynamics and assessing the ecosystem service values in the Trans-Boundary Gandaki river basin, Central Himalayas. Susainability, 10(9), 3052. https:// doi.org/10.3390/SU10093052
Rai, R., Zhang, Y., Paudel, B., Li, S., & Khanal, N. R. (2017). A synthesis of sudies on land use and land cover dynamics during 1930–2015 in Bangladesh. Susainability, 9(10), 1866.
https://doi.org/10.3390/SU9101866
Ramachandraiah, C., & Prasad, S. (2004). Impact of urban growth on water bodies: The case of Hyderabad. Hyderabad: Centre for Economic and Social Studies. Working Paper no. 60. Center for Economic and Social Studies Begumpet, Hyderabad-500016.
https://core.ac.uk/download/pdf/6604874.pdf.
Rebetez, M. (1996). Seasonal relationship between temperature, precipitation and snow cover in a mountainous region. Theoretical and Applied Climatology, 54(3–4), 99–106.
https://doi.org/10.1007/BF00865152
Regmi, B.R., Pandit, A. (2016). Classifcation of adaptation measures and criteria for evaluation: Case sudies in the Gandaki river basin, Nepal. HI-AWARE Working Paper 6. Kathmandu: HI-AWARE. fle:///C:/Users/User/Downloads/Hi-AwareWP6.pdf
Rouse, J. W., Haas, R. H., Schell, J., & Deering, D. (1974). Monitoring vegetation sysems in the Great Plains with ERTS. NASA Spec. Publ1974:351(1):309.
Sahana, V., Mondal, A., & Sreekumar, P. (2021). Drought vulnerability and risk assessment in India: Sensitivity analysis and comparison of aggregation techniques. Journal of Environmental Management, 299, 113689.
https://doi.org/10.1016/J. JENVMAN.2021.113689
Sangita, D., & Dulal, G. (2021). Satellite mapping of land use land cover (LULC) changes and NDVI in the Subansiri river basin of easern Himalayas and the Alaknanda river basin of wesern Himalayas: A comparative sudy based on spatial analysis. Research Journal of Chemisry and Environment, 25(7).
Sayari, N., Bannayan, M., Alizadeh, A., & Farid, A. (2013). Using drought indices to assess climate change impacts on drought conditions in the northeas of Iran (case sudy: Kashafrood basin). Meteorological Applications, 20(1), 115–127. https://doi. org/10.1002/MET.1347
Seto, K. C. (2011). Exploring the dynamics of migration to mega-delta cities in Asia and Africa: Contemporary drivers and future scenarios. Global Environmental Change, 21(SUPPL. 1), S94–S107.
https://doi.org/10.1016/J.GLOENVCHA.2011.08.005
Shamshirband, S., Hashemi, S., Salimi, H., Samadianfard, S., Asadi, E., Shadkani, S., Kargar, K., Mosavi, A., Nabipour, N., & Chau, K. W. (2020). Predicting sandardized sream flow index for hydrological drought using machine learning models. Engineering Applications of Computational Fluid Mechanics, 14(1), 339–350.
https://doi.org/10.1080/19942060.2020.1715844
Sharma, S., Khadka, N., Hamal, K., Shresha, D., Talchabhadel, R., & Chen, Y. (2020). How accurately can satellite products (TMPA and IMERG) detect precipitation patterns, extremities, and drought across the Nepalese Himalaya? Earth and Space Science, 7(8), e2020EA001315. https:// doi.org/10.1029/2020EA001315
Shresha, A. B., Wake, C. P., Mayewski, P. A., & Dibb, J. E. (1999). Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–94. Journal of Climate, 12(9), 2775–2786. https:// doi.org/10.1175/1520-0442(1999)012
Shresha, M. S., Artan, G. A., Bajracharya, S. R., Gautam, D. K., & Tokar, S. A. (2011). Bias-adjused satellite-based rainfall esimates for predicting floods: Narayani Basin. Journal of Flood Risk Management, 4(4), 360–373.
https://doi.org/10.1111/J.1753-318X.2011.01121.X
Shresha, R. M., & Shresha, R. M. (2020). Drought or wet assessment of daily rainfall pattern of the Budhi Gandaki river basin, Nepal: Standardized precipitation index approach using probabilisic model. Nepalese Journal of Statisics, 4, 57–72.
https://doi.org/10.3126/NJS.V4I0.33497
Shresha, R. M., Sthapit, A. B., & Shresha, S. L. (2018). A Probabilisic approach for assessment of future drought in Bagmati river basin, Nepal. Nepalese Journal of Statisics, 2, 75–88.
https://doi.org/10.3126/NJS.V2I0.21156
Sigdel, K. P., Ghimire, N. P., Pandeya, B., & Dawadi, B. (2022). Hisorical and projected variations of precipitation and temperature and their extremes in relation to climatic indices over the Gandaki river basin, Central Himalaya. Atmosphere, 13(11), 1866.
https://doi.org/10.3390/ATMOS13111866
Sigdel, M., Ikeda, M., & Ikeda, & M. (2010). Spatial and temporal analysis of drought in Nepal using Standardized Precipitation Index and its relationship with climate indices. Journal of Hydrology and Meteorology, 7(1), 59–74. https://doi. org/10.3126/JHM.V7I1.5617
Sultana, M. S., Gazi, M. Y., & Mia, M. B. (2021). Multiple indices based agricultural drought assessment in the northwesern part of Bangladesh using geospatial techniques. Environmental Challenges, 4, 100120.
https://doi.org/10.1016/J. ENVC.2021.100120
Tang, Q., Gao, H., Lu, H., & Lettenmaier, D. P. (2009). Remote sensing: hydrology. Physical Geography 33(4), 490–509. https:// doi.org/10.1177/0309133309346650
Tavazohi, E., & Nadoushan, M. A. (2018). Assessment of Drought in the Zayandehroud Basin during 2000-2015 Using NDDI and SPI Indices. Fresenius Environmental Bulletin, 27(4), 2332-2340.
Tripathi, S., Subedi, R., & Adhikari, H. (2020). Fores cover change pattern after the intervention of community foresry management sysem in the Mid-Hill of Nepal: A case sudy. Remote Sensing, 12(17), 2756.
https://doi.org/10.3390/RS12172756
Van Vliet, M. T. H., Shefeld, J., Wiberg, D., & Wood, E. F. (2016). Impacts of recent drought and warm years on water resources and electricity supply worldwide.
Environmental Research Letters, 11(12), 124021.
https://doi.org/10.1088/1748-9326/11/12/124021
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The sandardized precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi. org/10.1175/2009JCLI2909.1
Vohra, C. P. (1981). Note on recent glaciological expeditions in Himachal Pradesh. Note on Recent Glaciological Expeditions in Himachal Pradesh, 6, 26–29. :http://pascal-francis.inis.fr/vibad/index.php?action=getRecordDetail&idt=9555540
Wang, X., Wang, T., Liu, D., Guo, H., Huang, H., & Zhao, Y. (2017). Moisure-induced greening of the South Asia over thepas three decades. Global Change Biology, 23(11), 4995–5005. https://doi. org/10.1111/GCB.13762
World Meteorological Organization (WMO) and Global Water Partnership (GWP). (2016): Handbook of drought indicators and indices (M. Svoboda and B.A. Fuchs). Integrated drought management programmer (IDMP), Integrated Drought Management Tools and Guidelines Series 2. Geneva.
Xu, G., Zhang, H., Chen, B., Zhang, H., Innes, J. L., Wang, G., Yan, J., Zheng, Y., Zhu, Z., & Myneni, R. B. (2014). Changes in vegetation growth dynamics and relations with climate over China’s Landmass from 1982 to 2011.
Remote Sensing, 6(4), 3263–3283.
https://doi.org/10.3390/RS6043263
Yadeta, D., Kebede, A., & Tessema, N. (2020). Climate change posed agricultural drought and potential of rainy season for effective agricultural water management, Kesem sub-basin, Awash Basin, Ethiopia. Theoretical and Applied Climatology, 140(1–2), 653–666. https://doi.org/10.1007/S00704-020-03113-7 .
Yang, H., Munson, S. M., Huntingford, C., Carvalhais, N., Knapp, A. K., Li, X., Peñuelas, J., Zscheischler, J., & Chen, A. (2023). The detection and attribution of extreme reductions in vegetation growth across the global land surface. Global Change Biology, 29(8), 2351–2362. https://doi.org/10.1111/GCB.16595
Young, R. A. (1995). Coping with a severe susained drought on the Colorado Rwer: Introduction and overview. Journal of the American Water Resources Association, 31(5), 779–788. https:// doi.org/10.1111/J.1752-1688.1995. TB03400.X
Zhang, C., & Fang, Y. (2020). Application of capital-based approach in the measurement of livelihood susainability: A case sudy from the Koshi River basin community in Nepal. Ecological Indicators, 116, 106474. https://doi.org/10.1016/J. ECOLIND.2020.106474
Zhong, L., Ma, Y., Salama, M. S., & Su, Z. (2010). Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau.Clim atic Change, 103(3), 519–535 https://doi.org/10.1007/s10584-009-9787-8 .
Zolotokrylin, A. N. (2010). Droughts: Causes, Disribution and consequences. Natural Disasers.https://www.eolss.net/sample-chapters/c01/E4-06-02-01.pdf