Añel, J. A., Fernández-González, M., Labandeira, X., López-Otero, X., & Dela Torre, L. (2017). Impact of cold waves and heat waves on the energy production sector. Atmosphere, 8(11), 209. https:// doi.org/10.3390/atmos8110209
Calvo, C. (2008). Vulnerability to multidimensional poverty: Peru, 1998–2002. World Development, 36(6), 1011-1020. https://doi.org/10.1016/j. worlddev.2007.10.001
Clarke, B., Otto, F., Stuart-Smith, R., & Harrington, L. (2022). Extreme weather impacts of climate change: an attribution perspective.
Environmental Research: Climate, 1(1), 012001.
https://doi.org/10.1088/2752-5295/ac6e7d
Cred and UNDRR (2020). Human Cost of Disasters. An Overview of the last 20 years: 2000–2019. CRED, UNDRR, Geneva.
Cutter, S. L., Boruff, B. J., & Shirley, W. L. (2012). Social vulnerability to environmental hazards. In Hazards vulnerability and environmental justice (pp. 143-160). Routledge. https://doi. org/10.1111/1540-6237.8402002
Deryng, D., Conway, D., Ramankutty, N., Price, J., & Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environmental Research Letters, 9(3), 034011. https://doi.org/ 10.1088/1748-9326/9/3/034011
Dosio, A., Mentaschi, L., Fischer, E. M., & Wyser, K. (2018). Extreme heat waves under 1.5 C and 2 C global warming.
Environmental research letters, 13(5), 054006.
https://doi.org/10.1088/1748-9326/aab827
Ekrami, M., Mahdavi Najaf Abadi, R., Rezai, M., Vagharfard, H., & Barkhordari, J. (2021). Spatial Analysis and Assessment of Agricultural Drought Vulnerability in Arid Regions (Case Study: Pishkouh Watershed, Yazd Province).
Watershed Engineering and Management, 13(1), 197-212.
https://doi.org/10.22092/ijwmse.2020.341878.1772
Fakhri, M., Dokohaki, H., Eslamian, S., Fazeli Farsani, I., & Farzaneh, M. R. (2014). Flow and sediment transport modeling in rivers. Handbook of Engineering Hydrology, 2, 233-275. https://doi. org/10.1201/b16683-14
Fakhri, M., Farzaneh, M. R., Eslamian, S., & Khordadi, M. J. (2013). Confdence interval assessment to estimate dry and wet spells under climate change in Shahrekord Station, Iran.
Journal of Hydrologic Engineering, 18(7), 911-918.
https://doi.org/10.1061/(ASCE)HE.1943-5584.0000688
Fakhar, M. S., & Nazari, B. (2024). Multitemporal Analysis of Drought in Iran: Monitoring and Evaluation of Spatial and Temporal Characteristics Using MODIS Indices. Journal of Drought and Climate change Research, 2(1), 39-58. doi: 10.22077/jdcr.2024.7011.1050
Farzaneh, M., Bani mostafa arab, F., & Hussein Hamarashid, S. (2024). Preservation and Restoration of the Hamon Wetland is a Common Solution for Iran and Afghanistan in the Field of Facing the Phenomenon of Climate Change. Journal of Drought and Climate change Research, 2(1), 15-38. doi: 10.22077/jdcr.2023.6658.1037
Farzaneh, M., & Bani mostafa arab, F. (2023a). Analysis of Climate Change Adaptation Laws in Developed Countries. Journal of Drought and Climate change Research, 1(1), 49-70. doi: 10.22077/ jdcr.2023.6024.1009
Farz Farzaneh, M., & Banimostafaarab, F. (2023b). Analysis of climate change adaptation laws in developing countries. Climate Change Research, 4(13), 35-54. doi: 10.30488/ccr.2023.394431.1128
Fazeli Farsani, I., Farzaneh, M. R., Besalatpour, A. A., Salehi, M. H., & Faramarzi, M. (2019). Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed. Theoretical and Applied Climatology, 136, 169-184. https://doi. org/10.1007/s00704-018-2474-9
Hamzeh, A., Farzaneh, M., Khordadi, M. J., & Banimostafaarab, F. (2024). The non-structural strategy of insurance in developed countries to adapt to climate change. Journal of Climate Research, 1402(54), 179-199.
Hamzeh, A., Farzaneh, M., Khordadi, M. J., & Banimostafa Arab, F. (2023). Challenges of Developing Countries to Exploitation Non-structured Insurance Strategy to Climate Change Adaptation. Journal of Climate Research, 1401(52), 169-182.
Hao, Z., Hao, F., Singh, V. P., & Zhang, X. (2018). Changes in the severity of compound drought and hot extremes over global land areas. Environmental Research Letters, 13(12), 124022. https:// doi.org/ 10.1088/1748-9326/aaee96
Hao, Z., Hao, F., Xia, Y., Feng, S., Sun, C., Zhang, X., ... & Meng, Y. (2022). Compound droughts and hot extremes: Characteristics, drivers, changes, and impacts. Earth-Science Reviews, 104241.
https://doi.org/10.1016/j. earscirev.2022.104241
Hosseini Seddigh, S. M., & Jalali, M. (2024). Analysis of Iran’s Drought Changes with Palmer’s Self-Adjustment Index. Journal of Drought and Climate change Research, 2(1), 93-106. doi: 10.22077/jdcr.2024.6149.1016
Jayanthi, H., Husak, G. J., Funk, C., Magadzire, T., Chavula, A., & Verdin, J. P. (2013). Modeling rain-fed maize vulnerability to droughts using the standardized precipitation index from satellite esimated rainfall—Southern Malawi case sudy. International Journal of Disaster Risk Reduction, 4, 71-81. https://doi. org/10.1016/j.ijdrr.2013.02.001
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). Analysis of Standardized Precipitation Index (SPI) data for drought assessment. Water, 26(2), 1-72.
Luers, A. L., Lobell, D. B., Sklar, L. S., Addams, C. L., & Matson, P. A. (2003). A method for quantifying vulnerability, applied to the agricultural system of the Yaqui Valley, Mexico.
Global Environmental Change, 13(4), 255-267.
https://doi.org/10.1016/S0959-3780(03)00054-2
Murthy, C. S., Laxman, B., & Sai, M. S. (2015). Geospatial analysis of agricultural drought vulnerability using a composite index based on exposure, sensitivity and adaptive capacity.
International journal of disaster risk reduction, 12, 163-171.
https://doi.org/10.1016/j. ijdrr.2015.01.004
Metzger, M. J., Leemans, R., & Schröter, D. (2005). A multidisciplinary multi-scale framework for assessing vulnerabilities to global change. International Journal of Applied Earth Observation and Geoinformation, 7(4), 253-267. https:// doi.org/10.1016/j.jag.2005.06.011
Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of hydrology, 391(1-2), 202-216. https://doi. org/10.1016/j.jhydrol.2010.07.012
Ortega-Gaucin, D., Ceballos-Tavares, J. A., Ordoñez Sánchez, A., & CastellanoBahena, H. V. (2021). Agricultural drought risk assessment: A spatial analysis of hazard, exposure, and vulnerability in Zacatecas, Mexico.
Water, 13(10), 1431.
https://doi.org/10.3390/w13101431
Ravindranath, N. H., Rao, S., Sharma, N., Nair, M., Gopalakrishnan, R., Rao, A. S., ... & Bala, G. (2011). Climate change vulnerability profles for North East India. Current Science, 384-394.
Rezaeei, A. R., & Roshani, A. (2024). Prioritization of Factors Affecting Drought using the Fuzzy Analytic Hierarchy Process Method (Study Case: Torbat Heydarieh City). Journal of Drought and Climate change Research, 2(1), 77-92. doi: 10.22077/jdcr.2024.7255.1057
Rostamian, R., Eslamian, S., & Farzaneh, M. R. (2013). Application of standardised precipitation index for
predicting meteorological drought intensity in Beheshtabad watershed, central Iran.
International Journal of Hydrology Science and Technology, 3(1), 63-76.
https://doi.org/10.1504/IJHSt.2013.055233
Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., ... & Zwiers, F. W. (2012). Changes in climate extremes and their impacts on the natural physical environment.
Thirumalaivasan, D., Karmegam, M., & Venugopal, K. (2003). AHP-DRAStIC: software for specifc aquifer vulnerability assessment using DRAStIC model and GIS. Environmental Modelling & Software, 18(7), 645-656. https://doi. org/10.1016/S1364-8152(03)00051-3
Tigkas, D., Vangelis, H., & Tsakiris, G. (2019). Drought characterisation based on an agriculture-oriented standardized precipitation index.
Theoretical and applied climatology, 135, 1435-1447.
https://doi.org/10.30638/eemj.2015.156
UNDP (2010). Mapping Climate Change Vulnerability and Impact Scenarios – A Guidebook for Sub-National Planners. United Nations Development Programme.
Wang, R., Zhang, J., Guo, E., Alu, S., Li, D., Ha, S., & Dong, Z. (2019). Integrated drought risk assessment of multi-hazard-affected bodies based on copulas in the Taoerhe Basin, China. Theoretical and Applied Climatology, 135, 577-592 https://doi. org/10.1007/s00704-018-2374-z
Wilhelmi, O. V., & Wilhite, D. A. (2002). Assessing vulnerability to agricultural drought: a Nebraska case study. Natural Hazards, 25, 37-58. https://doi. org/10.1023/A:1013388814894
Wu, J., He, B., Lü, A., Zhou, L., Liu, M., & Zhao, L. (2011). Quantitative assessment and spatial characteristics analysis of agricultural drought vulnerability in China.
Natural Hazards, 56, 785-801.
https://doi.org/10.1007/s11069-010-9591-9
Zamani Nouri, A., Farsani, I.F., & Farzaneh, M.R. (2015). Assessment of multi-index agricultural drought vulnerability and spatial characteristics analysis. IJBPAS, 4(12), 440-452.
Zhang, Q., Sun, P., Li, J., Xiao, M., & Singh, V. P. (2015). Assessment of drought vulnerability of the Tarim River basin, Xinjiang, China. Theoretical and applied climatology, 121, 337-347. https://doi. org/10.1007/s00704-014-1234-8
Zhang, Q., Yao, Y., Wang, Y., Wang, S., Wang, J., Yang, J., ... & Li, W. (2019). Characteristics of drought in Southern China under climatic warming, the risk, and countermeasures for prevention and control. Theoretical and Applied Climatology, 136, 1157-1173. https://doi. org/10.1007/s00704-018-2541-2
Zipper, S. C., Qiu, J., & Kucharik, C. J. (2016). Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes. Environmental Research Letters, 11(9), 094021. https:// doi.org/ 10.1088/1748-9326/11/9/094021