Document Type : Original Article

Authors

1 Agricultural Expert, promotion and education of Yazd province, Yazd, Iran.

2 Professor, Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.

3 Associated Professor, Department of Agrotechnology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.

4 PhD Graduated of Agroecology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Climate change is rapidly degrading the conditions of crop production. For instance, increasing salinization and aridity is forecasted to increase in the most parts of the world. This research was conducted in two regions of Yazd province with 10 separate experiments in the form of a randomized complete block design with three replications. Experimental factors included 5 promising modified lines in Yazd Salinity Research Center with Titicaca cultivar.The results of calibration and validation of CROPGRO model with DSSAT software were evaluated as favorable for quinoa and the 30-year seasonal analysis of the model for the city of Yazd showed that the optimal planting dates for lines 3, 4, 5 and 6 are the first of August, the end of July, and the middle of It is August and the end of July because it is the shortest period of growth. Considering that this model can integrate the complex interactions of soil properties, climatic conditions, management practices and genetic characteristics of the product, it leads to a better understanding of the complex interactions between factors affecting the growth and development of this plant, so it can be used to develop studies on the aspect Different types of quinoa ecophysiology should be used in research departments.

Keywords

Main Subjects

Bazile, D., Bertero, H. D., & Nieto, C. (2014). Eado del arte de la quinua en el mundo, FAO (Santiago de Chile) y CIRAD (Montpellier, Francia).                                                                                                                                                                            Bertero, H.D. (2003). Response of developmental processeo temperature and photoperiod in Quinoa Chenopodium quinoa Willd. Food Rev Int. 19, 87–97. DOI: 10.1081/FRI-120018870
Bunce, J. A. (2018). Thermal acclimation of the temperature dependence of the VCmax of Rubisco in quinoa. Photosynthetica, 56, 1171–1176. DOI:10.1007/s11099-018-0799-3
Ceccato, D.V., Daniel Bertero, H. & Batlla. H. (2011). Environmental control of dormancy in quinoa (Chenopodium quinoa) seeds: two potential genetic resources for pre-harve sprouting tolerance. Seed Sci. Res. 21, 133-141. DOI:10.1017/S096025851100002X
Eghbali, Sh., Jahan, M., Salehi, M., &. Nassiri, M. M. (2023). Determination of Cardinal Temperatures and Photoperiodic Response of Quinoa Chenopodium quinoa L. Lines using Linear and Nonlinear Models. Journal of Agroecology, 15, 191-208. [In Persian]. DOI: 10.22067/agry.2021.69386.1036
Hinojosa, L., González, J., Barrios-Masias, F., Fuentes, F., & Murphy, K. (2018). Quinoa Abiotic ress Responses: A Review. Plants, 7, 106. DOI:10.3390/plants7040106
Hinojosa, L., Matanguihan, J. B., & Murphy, K. M. (2019). Effect of high temperature on pollen mor phology, plant growth and seed yield in quinoa Chenopodium quinoa Willd. Journal of Agronomy and Crop Science, 205, 33–45.DOI:10.1111/jac.12302
Hirich, A., Choukr –Allah, R., & Jacobsen, S.E. (2014). Quinoa in Morocco -Effect of sowing dates on development and yield. Journal of Agronomy and Crop Science. 23, 1-7.
Hoogenboom, G., Jones, J.W., Porter, C.H., Wilkens, P.W., Boote, K.J., Batchelor, W.D., Hunt, L.A., & Tsuji, G.Y. (2004). DSSAT 4., Overview, vol. 1. ICASA, University of Hawaii, Honolulu, USA. DOI:10.11648/j.ijiis.20211006.13
Hoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A., Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, S., Singels, A., L.P., M., & Jones, J.W. (2017). Decision Support Syem for Agrotechnology Transfer (DSSAT) Version 4.7 (https://DSSAT.net). DOI:10.1016/j.gfs.2012.11.009
Matthews, R.B., Rivington, M., Muhammed, S., Newton, A.C., & Hallett, P.D. (2013). Adapting crops and cropping syemo future climateo ensure food security: the role of crop modelling. Global Food Security, 2, 24-28. DOI:10.22067/jag.v11i2.31912
Murphy, K., & Matanguihan, J. (2015). quinoa improvement and suainable production (I. Jhon Wiley and Sons, Ed.). New Jersey. DOI: 10.3390/agronomy9120832
Nassiri, M. M., Koocheki, A. R., Fallahpour, F., & Amiri, M. B. (2019). Optimization of Nitrogen Fertilizer and Irrigation in Wheat Triticum aestivum L. Cultivation by Central Composite Design. Journal of Agroecology, 11, 515-530. [In Persian].
Präger, A., Boote, K. J., Munz, S., & Hönninger, S. G. (2019). Simulating growth and development processes of Quinoa Chenopodium quinoa Willd.: adaptation and evaluation of the CSM-CROPGRO model. Agronomy, 9, 832. DOI: 10.1016/j.fcr.2007.06.003
Salehi, M., & Dehghani, F. (2017). Quinoa, suitable semi cereal for salt water resources. Report of Minisrty of Agricultural Jihad. [In Persian]. DOI:10.1016/j.fcr.2006.02.005
Soltani, A., & Hoogenboom, G. (2007). Assessing crop management options with crop simulation models based on generated weather data. Field Crops Research, 103, 198-207. DOI:10.1175/1520-0477
Soltani, A., Robertson, M.J., Mohammad-Nejad, Y., & Rahemi-Karizaki, A. (2006). Modeling chickpea growth and development: leaf production and senescence. Field Crops Research. 99, 14-23. DOI:10.1093/jxb/eri089
Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society, 63, 1309-1313.
Yin, X., ruik, P. C. J., Tang, Ch. Qi., & Liu, T. (2005). Model analysis of flowering phenology in recombinant inbred lines of barley. Journal of Experimental Botany, 56, 959-965.
Zacharias, M., Kumar, S.N., Singh, S.D., Swaroopa, D.N., & Aggarwal, P.K. (2015). Evaluation of a regional climate model for impact assessment of climate change on crop productivity in the tropics. Current Science, 108, 1119-1126.