نوع مقاله : مقاله پژوهشی
نویسندگان
1 گروه اکولوژی، پژوهشگاه علوم و تکنولوژی پیشرفته و علوم محیطی، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته، کرمان، ایران.
2 گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران.
3 گروه مهندسی آب، دانشگاه بیرجند، بیرجند، ایران.
چکیده
IDF (Intensity-Duration-Frequency) curves play a crucial role in hydrological modeling, infrastructure design, and flood risk management. Traditional methods, relying on ground-based observations, face challenges such as limited spatial coverage, short temporal records, and the stationary assumption, particularly under climate change. This study addresses these issues by utilizing ERA5 reanalysis data to develop basin-scale IDF curves for the Karkheh River Basin (KRB) in Iran. Annual Maximum Precipitation (AMP) series for 6-, 12-, 18-, and 24-hour durations were extracted from ERA5 data and corrected for bias using observations from seven synoptic stations. Bias correction significantly improved ERA5 estimates, particularly in high-altitude regions prone to systematic errors. An elevation-bias relationship was established to extend corrections basin-wide. The corrected AMP data were modeled with the Generalized Extreme Value (GEV) distribution under stationary and non-stationary conditions to construct spatially distributed IDF curves. Based on 82 grid points, these curves provide detailed rainfall intensity estimates, overcoming limitations of station-based methods. The findings underscore ERA5 data's potential, combined with bias correction, to enhance hydrological analyses in data-scarce regions by better capturing spatial variability and extreme precipitation. This work supports improved flood management and infrastructure planning. However, future research must address uncertainties in bias correction and parameter estimation while extending data records. High-resolution reanalysis datasets are pivotal for adapting to evolving climatic conditions, extreme weather, and prolonged droughts.
کلیدواژهها
موضوعات
Azadi, F., Sadough, S. H., Ghahroudi, M., & Shahabi, H. (2020). Zoning of flood risk in kashkan river basin using two models WOE and EBF. Journal of Geography and Environmental Hazards, 9(1), 45–60. [In Persian]. https://doi. org/ 10.22067/GEO.V9I1.83090.
Cheng, L., & AghaKouchak, A. (2015). Nonstationary precipitation intensity-durationfrequency curves for infrastructure design in a changing climate. Scientific Reports, 4(1), 7093. https://doi.org/10.1038/srep07093
Coles, S., Bawa, J., Trenner, L., & Dorazio, P. (2001). An introduction to statistical modeling of extreme values. Springer London. https:// doi.org/10.1007/978-1-4471-3675-0
Crévolin, V., Hassanzadeh, E., & BourdeauGoulet, S.-C. (2023). Updating the intensityduration-frequency curves in major Canadian cities under changing climate using CMIP5 and CMIP6 model projections. Sustainable Cities and Society, 92(September 2022), 104473. https://doi.org/10.1016/j.scs.2023.104473
De Leo, F., Besio, G., Briganti, R., & Vanem, E. (2021). Non-stationary extreme value analysis of sea states based on linear trends. Analysis of annual maxima series of significant wave height and peak period in the Mediterranean Sea. Coastal Engineering, 167, 103896. https:// doi.org/10.1016/j.coastaleng.2021.103896
Garibay, V. M., Gitau, M. W., Kiggundu, N., Moriasi, D., & Mishili, F. (2021). Evaluation of reanalysis precipitation data and potential bias correction methods for use in data-scarce areas. Water Resources Management, 35(5), 1587–1602. https://doi.org/10.1007/s11269-021-02804-8
Guhathakurta, P., Sreejith, O. P., & Menon, P. A. (2011). Impact of climate change on extreme rainfall events and flood risk in India. Journal of Earth System Science, 120(3), 359–373.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., … Thépaut, J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803
Jalbert, J., Genest, C., & Perreault, L. (2022). Interpolation of precipitation extremes on a large domain toward IDF curve construction at unmonitored locations. Journal of Agricultural, Biological and Environmental Statistics, 27(3), 461–486. https://doi.org/10.1007/s13253-022-00491-5
Kavyani Malayeri, A., Saghafian, B., & Raziei, T. (2021). Performance evaluation of ERA5 precipitation estimates across Iran. Arabian Journal of Geosciences, 14(23), 2676. https:// doi.org/10.1007/s12517-021-09079-8
Kendall, M. G. (1975). Rank Correlation Methods. Charles Griffin.
Lavers, D. A., Simmons, A., Vamborg, F., & Rodwell, M. J. (2022). An evaluation of ERA5 precipitation for climate monitoring. Quarterly Journal of the Royal Meteorological Society, 148(748), 3152–3165. https://doi.org/10.1002/qj.4351
Mann, H. B. (1945). Nonparametric Tests Against Trend. Econometrica, 13(3), 245–259.
Mianabadi, A. (2023). Evaluation of longterm satellite-based precipitation products for developing intensity-frequency (IF) curves of daily precipitation. Atmospheric Research, 286(February), 106667. https://doi.org/10.1016/j.atmosres.2023.106667
Noor, M., Ismail, T., Shahid, S., Asaduzzaman, M., & Dewan, A. (2021). Evaluating intensity-duration-frequency (IDF) curves of satellite-based precipitation datasets in Peninsular Malaysia. Atmospheric Research, 248, 105203. https://doi.org/10.1016/j. atmosres.2020.105203
Parker, W. S. (2016). Reanalyses and Observations: What’s the difference? Bulletin of the American Meteorological Society, 97(9), 1565–1572. https://doi.org/10.1175/BAMS-D-14-00226.1
Prein, A. F., Langhans, W., Fosser, G., Ferrone, A., Ban, N., Goergen, K., Keller, M., Tölle, M., Gutjahr, O., Feser, F., Brisson, E., Kollet, S., Schmidli, J., van Lipzig, N. P. M., & Leung, R. (2015). A review on regional convection‐permitting climate modeling: Demonstrations, prospects, and challenges. Reviews of Geophysics, 53(2), 323–361. https://doi. org/10.1002/2014RG000475
Ragno, E., AghaKouchak, A., Love, C. A., Cheng, L., Vahedifard, F., & Lima, C. H. R. (2018). Quantifying changes in future intensity‐duration‐frequency curves using multimodel ensemble simulations. Water Resources Research, 54(3), 1751–1764. https:// doi.org/10.1002/2017WR021975
Srivastava, A. K., Grotjahn, R., Ullrich, P. A., & Sadegh, M. (2021). Pooling data improves multimodel IDF estimates over median-based IDF estimates: Analysis over the Susquehanna and Florida. Journal of Hydrometeorology, 22(4), 971–995. https://doi.org/10.1175/JHM-D-20-0180.1
Venkatesh, K., Maheswaran, R., & Devacharan, J. (2022). Framework for developing IDF curves using satellite precipitation: a case study using GPM-IMERG V6 data. Earth Science Informatics, 15(1), 671–687. https:// doi.org/10.1007/s12145-021-00708-0
Zambrano-Bigiarini, M., Soto, C., & Tolorza, V. (2024). Spatially-distributed intensityduration-frequency (IDF) curves for chile using sub-daily gridded datasets. EGU general assembly 2024, Vienna, Austria, 14–19 Apr 2024. https://doi.org/10.5194/egusphereegu24-21043