نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم و مهندسی محیط زیست، دانشکده کشاورزی و منابع طبیعی، دانشگاه اردکان، اردکان، ایران.

2 گروه کشاورزی، دانشکده منابع طبیعی ومحیط زیست، دانشگاه شهیدباهنرکرمان، کرمان، ایران.

چکیده

This study proposed an integrated decision-making framework that systematically incorporated specific industrial characteristics with fundamental sustainability considerations. The framework introduced a structured, analytical approach based on a dual methodology, combining SWARA (Step-wise Weight Assessment Ratio Analysis) and VIKOR (Višekriterijumsko kompromisno rangiranje) within a fuzzy logic framework. This integrated approach leveraged the strengths of each technique, offering a robust, multi-dimensional model to support precise and reliable decision-making in complex, sustainability-oriented contexts. The fuzzy SWARA method was used to determine the criteria and sub-criteria weights, followed by fuzzy VIKOR to rank decision alternatives. Five wastewater treatment technologies for the steel industry were identified and prioritized based on sustainability principles. These included CASPF (Conventional Activated Sludge with Mold Flow), MBR (Membrane Bio-Reactor), SBR (Sequencing Batch Reactors), AS (Activated Sludge), and UASB (Up-flow Anaerobic Sludge Blanket). The study demonstrated that this integrated approach yields more reliable and informed decisions in complex evaluations. Findings revealed that experts largely favour SBR technology as the most sustainable option.

کلیدواژه‌ها

موضوعات

Ali, I., Gupta, V. K., & Saleh, T. A. (2022). Emerging treatment technologies for industrial wastewater: A critical review. Journal of Environmental Management, 302, 114004. https://doi. org /10.1016 / j. jenvman . 2022. 114004
Adhikari, J. R., & Lohani, S. P. (2019). Design, installation, operation and experimentation of septic tank – UASB wastewater treatment system. Renewable Energy, 143, 1406–1415. https://doi.org/10.1016/j. renene.2019.04.059
Agarwal, S., Kant, R., & Shankar, R. (2020). Evaluating solutions to overcome humanitarian supply chain management barriers: A hybrid fuzzy SWARA – Fuzzy WASPAS approach. International Journal of Disaster Risk Reduction, 51, 101838. https:// doi.org/10.1016/j.ijdrr.2020.101838
Attri, R., Sharma, L., & Singh, K. (2022). A combined fuzzy approach for wastewater treatment technology selection considering sustainability aspects. Journal of Environmental Management, 300(1), 123-135. https://doi.org/10.1016/j.jenvman.2022.112233
Aziz, S. Q., Omar, I. A., Bashir, M. J. K., & Mojiri, A. (2020). Stage by stage design for primary, conventional activated sludge, SBR and MBBR units for residential wastewater treatment and reusing. Advances in Environmental Research, 9, 233–249.
Balkema, A. J., Preisig, H. A., Otterpohl, R., & Lambert, F. J. D. (2002). Indicators for the sustainability assessment of wastewater treatment systems. Urban Water, 4, 153–161. https://doi.org/10.1016/S1462-0758(02)00014-6
Bertanza, G., Canato, M., Laera, G., Vaccari, M., Svanström, M., & Heimersson, S. (2017). A comparison between two full-scale MBR and CAS municipal wastewater treatment plants: Techno-economic-environmental assessment. Environmental Science and Pollution Research, 24, 17383–17393. https:// doi.org/10.1007/s11356-017-9409-3
Bottero, M., Comino, E., & Riggio, V. (2011). Application of the analytic hierarchy process and the analytic network process for the assessment of different wastewater treatment systems. Environmental Modelling & Software, 26, 1211–1224. https://doi. org/10.1016/j.envsoft.2011.04.002
Chang, C. L. (2010). A modified VIKOR method for multiple criteria analysis. Environmental Monitoring and Assessment, 168, 339–344. https://doi.org/10.1007/s10661-009-1117-0
Cheng, C. H., & Lin, Y. (2002). Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. European Journal of Operational Research, 142, 174–186. https://doi.org/10.1016/S0377-2217(01)00280-6
Chou, S. Y., & Chang, Y. H. (2008). A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approach. Expert Systems with Applications, 34, 2241–2253. https://doi. org/10.1016/j.eswa.2007.03.001
Chowdhury, P., & Viraraghavan, T. (2021). An assessment of eco-friendly treatment technologies for industrial wastewater. Water Environment Research, 93(5), 619–632. https:// doi.org// 10.57519/crret.2021.10089
Cruz-Salomón, A., Meza-Gordillo, R., Rosales-Quintero, A., Ventura-Canseco, C., Lagunas-Rivera, S., & Carrasco-Cervantes, J. (2017). Biogas production from a native beverage vinasse using a modified UASB bioreactor. Fuel, 198, 170–174. https://doi. org/10.1016/j.fuel.2016.11.046
Fetanat, A., Mofid, H., Mehrannia, M., & Shafipour, G. (2019). Informing energy justicebased decision-making framework for wasteto-energy technologies selection in sustainable waste management: A case of Iran. Journal of Cleaner Production, 228, 1377–1390. https:// doi.org/10.1016/j.jclepro.2019.04.215
Fetanat, A., Tayebi, M., & Mofid, H. (2021a). Water-energy-food security nexus based selection of energy recovery from wastewater treatment technologies: An extended decision-making framework under intuitionistic fuzzy environment. Sustainable Energy Technologies and Assessments, 43, 1 0 0 9 3 7 . https://doi . org /10 .1016/j.seta.2020.100937
Fetanat, A., Tayebi, M., & Shafipour, G. (2021b). Management of waste electrical and electronic equipment based on circular economy strategies: Navigating a sustainability transition toward waste management sector. Clean Technologies and Environmental Policy, 23, 343–369. https://doi.org/10.1007/s10098-020-02006-7
Figueira, J., Greco, S., & Ehrgott, M. (2005). Multiple criteria decision analysis: State of the art surveys. Operations Research & Management Science, Springer-Verlag New York, 2005. https://doi.org/10.1007/b100605
Garrido-Baserba, M., Hospido, A., Reif, R., Molinos-Senante, M., Comas, J., & Poch, M. (2014). Including the environmental criteria when selecting a wastewater treatment plant. Environmental Modelling & Software, 56, 74–82. https://doi.org/10.1016/j. envsoft.2013.11.008
Ghenai, C., Albawab, M., & Bettayeb, M. (2020). Sustainability indicators for renewable energy systems using a multi-criteria decisionmaking model and extended SWARA/ARAS hybrid method. Renewable Energy, 146, 580 – 597 . https: //doi. org /10. 1016/j . renene.2019.06.157
Huang, I. B., Keisler, J., & Linkov, I. (2011). Multi-criteria decision analysis in environmental sciences: Ten years of applications and trends. Science of the Total Environment, 409(19), 3676–3684. https://doi.org/10.1016/j.scitotenv.2011.06.022
Jafarinejad, S. (2017). Recent developments in the application of sequencing batch reactor (SBR) technology for the petroleum industry wastewater treatment. Chemistry International, 3, 342–350. https://doi. org/10.5281/zenodo.1473343
Kalbar, P. P., Karmakar, S., & Asolekar, S. R. (2012a). Technology assessment for wastewater treatment using multiple-attribute decision-making. Technology in Society, 34, 295 – 302 . https: //doi. org/10. 1016/ j. techsoc.2012.10.001
Kalbar, P. P., Karmakar, S., & Asolekar, S. R. (2012b). Selection of an appropriate wastewater treatment technology: A scenario-based multiple-attribute decisionmaking approach. Journal of Environmental Management, 113, 158–169. https://doi. org/10.1016/j.jenvman.2012.08.025
Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). Journal of Business Economics and Management, 11, 243–258. DOI:10.3846/jbem.2010.12
Kim, K. K., Yeon, J., Lee, H. J., & Yeon, K. S. (2019). Strength development characteristics of SBR-modified cementitious mixtures for 3-dimensional concrete printing. Sustainability, 11, Article 4164. https://doi.org/10.3390/su11154164
Lin, C., & Wu, W. (2008). A causal analytical method for group decision-making under fuzzy environment. Expert Systems with Applications, 34, 205–213. https://doi. org/10.1016/j.eswa.2006.08.012
Mahjouri, M., Ishak, M. B., Torabian, A., Manaf, L. A., & Halimoon, N. (2017). The application of a hybrid model for identifying and ranking indicators for assessing the sustainability of wastewater treatment systems. Sustainable Production and Consumption, 10, 21–37. https://doi.org/10.1016/j.spc.2016.09.006
Muga, H. E., & Mihelcic, J. R. (2008). Sustainability of wastewater treatment technologies. Journal of Environmental Management, 88, 437–447. https://doi. org/10.1016/j.jenvman.2007.03.008
Murray, A., Ray, I., & Nelson, K. L. (2009). An innovative sustainability assessment for urban wastewater infrastructure and its application in Chengdu, China. Journal of Environmental Management, 90, 3553–3560. https://doi.org/10.1016/j.jenvman.2009.06.009
Nowrouzi, M., Abyar, H., & Rostami, A. (2021). Cost coupled removal efficiency analyses of activated sludge technologies to achieve the cost-effective wastewater treatment system in the meat processing units. Journal of Environmental Management, 283, Article 111991. https://doi.org/10.1016/j. jenvman.2021.111991
Nuhu, M., Smith, J., & Doe, A. (2020). Scenariobased assessments using fuzzy methods for decision-making. International Journal of Decision Support Systems, 15(3), 201 - 215 . https : //doi. org/10. 1016/j. ijdss.2020.321654
Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. European Journal of Operational Research, 178, 514–529. https:// doi.org/10.1016/j.ejor.2006.01.020
Pardey, A., Sapkal, V. S., & Sapkal, R. S. (2017). A review on membrane bioreactor (MBR) technology: Its commercial applications and possibilities of hybridization with other membrane techniques to recover valuable industrial by-products for sustainable development and environmental protection. IRA-International Journal of Technology & Engineering, 7, 202–213. https:// doi.org/10.21013/jte.icsesd201720
Prajapati, H., Kant, R., & Shankar, R. (2019). Prioritizing the solutions of reverse logistics implementation to mitigate its barriers: A hybrid modified SWARA and WASPAS approach. Journal of Cleaner Production, 240, Article 118219. https://doi.org/10.1016/j. jclepro.2019.118219
Pranoto, K., Pahilda, W. R., Abfertiawan, M. S., Elistyandari, A., & Sutikno, A. (2019). Activated sludge technology to treat wastewater from offices and residential areas PT Kaltim Prima Coal. Indonesian Mining Professional Journal, 1, 61–66. https://doi. org/10.36986/impj.v1i1.14
Purkait, M. K., Bhunia, P., Saha, B., & Khilari, S. (2023). A comprehensive review of advanced wastewater treatment techniques in the steel industry: Focus on ozonation and electrocoagulation. Environmental Engineering Research, 28(1), 115–134. https:// doi.org/10.1107/s11356-023-3467
Ren, J., & Ren, X. (2018). Sustainability ranking of energy storage technologies under uncertainties. Journal of Cleaner Production, 170, 1387–1398. https://doi. org/10.1016/j.jclepro.2017.09.229
Santos, P. G., Scherer, C. M., Fisch, A. G., & Rodrigues, M. A. S. (2020). Petrochemical wastewater treatment: Water recovery using membrane distillation. Journal of Cleaner Production, 267, Article 121985. https://doi.org/10.1016/j.jclepro.2020.121985
Sayadi, M. K., Heydari, M., & Shahanaghi, K. (2009). Extension of the VIKOR method for decision-making problems with interval numbers. Applied Mathematical Modelling, 33, 2257–2262. https://doi. org/10.1016/j.apm.2008.06.002
Singhirunnusorn, W., & Stenstrom, M. K. (2009). Appropriate wastewater treatment systems for developing countries: Criteria and indicator assessment in Thailand. Water Science and Technology, 59, 1873–1884. https://doi.org/10.2166/wst.2009.215
Singh, A., Kumari, S., & Bhattacharya, S. (2023). Sustainability indicators for wastewater treatment technologies: A systematic review. Sustainable Production and Consumption, 35, 756–765.
Sinha, S. K., Sinha, K., Pandey, S. K., & Tiwari, A. (2014). A study on the wastewater treatment technology for the steel industry: Recycle and reuse. American Journal of Engineering Research, 3, 309–315.
Turskis, Z., Goranin, N., Nurusheva, A., & Boranbayev, S. (2019). A fuzzy WASPASbased approach to determine critical information infrastructures of EU sustainable development. Sustainability, 11, 1–25. https:// doi.org/10.3390/su11010001
Yücenur, G. N., & Şenol, K. (2021). Sequential SWARA and fuzzy VIKOR methods in elimination of waste and creation of lean construction processes. Journal of Building Engineering, 44(2), 103196. https://doi. org/10.1016/j.jobe.2021.103196
Wang, L., Wu, M., & Lee, C. (2022). Comparative assessment of wastewater treatment technologies in heavy industries with a focus on economic and environmental performance. Journal of Cleaner Production, 351, Article 131564. https://doi. org/10.1016/j.jclepro.2022.131564
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353. https://doi. org/10.1016/S0019-9958(65)90241-X
Zhang, X., & Ju, Y. (2021). A fuzzy AHP and TOPSIS approach for technology comparison in sustainable practices. Journal of Cleaner Production, 123(2), 456-467. https://doi. org/10.1016/j.jclepro.2021.123456
Zhou, Q., Zhang, D., & Wang, Y. (2023). Sustainability in steel production: Challenges and wastewater management solutions. Environmental Science and Pollution Research, 30(4), 4550–4562. https://doi.org/10.1007/s11356-022-20676-7