Ayers, R. S., & Westcot, D. W. (1985).
Water quality for agriculture (Vol. 29, p. 174). Rome: Food and agriculture organization of the United Nations.
https://www.academia. edu/download/94774091/book_rs_ayers_and_wetscot.pdf
Bindhu, B. K., Shaji, H., Kuruvila, K. J., Nazerine, M., & Shaji, S. (2021, March). Removal of total hardness using low cost adsorbents. In IOP Conference Series: Materials Science and Engineering (Vol. 1114, No. 1, p. 012089). IOP Publishing.
https://doi. org/10.1088/1757-899X/1114/1/012089
Cheng, S., Zhang, S., Zhang, L., Xia, H., Peng, J., & Wang, S. (2017). MicrowaveAssisted Preparation of Activated Carbon from Eupatorium Adenophorum: Effects of Preparation Parameters. High Temperature Materials and Processes, 36(8), 805-814. https://doi.org/ 10.1515/htmp-2015-0285
Chowdhury, T., Miah, J., & Banik, B. K. (2022). Low-Cost Salinity Treatment for Drinking Purpose Using Indigenous Materials. In Advances in Civil Engineering: Select Proceedings of ICACE 2020 (pp. 37-44). Springer Singapore. https://doi. org/10.1007/978-981-16-5547-0_4
Crini, G., & Badot, P. M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in polymer science, 33(4), 399-447. https://doi. org/10.1016/j.progpolymsci.2007.11.001
Crini, G., Lichtfouse, E., Wilson, L. D., & Morin-Crini, N. (2019). Conventional and non-conventional adsorbents for wastewater treatment.
Environmental Chemistry Letters, 17, 195-213.
https://doi.org/10.1007/s10311-018-0786-8
Dudley, L., Ben-Gal, A., & Shani, U. (2006, November). Influence of plant, soil and water properties on the leaching fraction. In Agronomy Abstracts P (Vol. 25711). https://scisoc.confex.com/crops/ 2006am/techprogram/P25711.HTM
Ehtaiwesh, A. F. (2022). The effect of salinity on nutrient availability and uptake in crop plants. Scientific Journal of Applied Sciences of Sabratha University, 55-73. https:// doi. org/10.47891/sabujas.v0i0.55-73.
Foo, K.Y., & Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2-10. DOI:10.1016/j.cej.2009.09.013
Hettiarachchi, E., Perera, R., Chandani Perera, A.D. L., & Kottegoda, N. (2016). Activated coconut coir for removal of sodium and magnesium ions from saline water. Desalination and Water Treatment, 57(47), 22341-22352. DOI:10.1080/19443994.2015.1129649
Iwuozor, K. O., Emenike, E. C., Ighalo, J. O., Omoarukhe, F. O., Omuku, P. E., & Adeniyi, A. G. (2022). A review on the thermochemical conversion of sugarcane bagasse into biochar. Cleaner Materials, 6, 100162. https://doi.org/10.1016/j.clema.2022.100162
Jamil, T.S., Ibrahim, H.S., Abd El-Maksoud, I.H., & El-Wakeel, S.T. (2010). Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. Optimum conditions. Desalination, 258(1-3), 34-40. doi:10.1016/j.desal.2010.03.05
Kasraee, M., Dehghani, M. H., Mahvi, A. H., Nabizadeh, R., Arjmand, M. M., Salari, M.,... & Tyagi, I. (2022). Adsorptive removal of humic substances using cationic surfactantmodified nano pumice from water environment: Optimization, isotherm, kinetic and thermodynamic studies.
Chemosphere, 307, 135983.
https://doi.org/10.1016/j.chemosphere.2022.135983
Kathiresan, M., & Sivaraj, P. (2016). Preparation and characterization of biodegradable sugarcane bagasse nano reinforcement for polymer composites using ball milling operation.
International Journal of Polymer Analysis and Characterization, 21(5), 428-435.
doi:10.1080/1023666X.2016.1168061Khaled, A., El Nemr, A., El-Sikaily, A., & Abdelwahab, O. (2009). Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies.
Journal of hazardous materials, 165(1-3), 100-110.
https://doi.org/10.1016/j.jhazmat.2008.09.122
Kharel, H. L., Sharma, R. K., & Kandel, T. P. (2016). Water hardness removal using wheat straw and rice husk ash properties.
Nepal Journal of Science and Technology, 17(1), 11-16.
https://doi.org/10.3126/NJST.V17I1.25057
Khayyun, T. S., & Mseer, A. H. (2019). Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent.
Applied Water Science, 9(8), 170.
https://doi.org/10.1007/s13201-019-1061-2
Li, D., Sun, L., Yang, L., Liu, J., Shi, L., Zhuo, L., Ye, T. and Wang, S., (2024). Adsorption behavior and mechanism of modified Pinus massoniana pollen microcarriers for extremely efficient and rapid adsorption of cationic methylene blue dye.
Journal of Hazardous Materials, 465, p.133308.
https://doi. org/10.1016/j.jhazmat.2023.133308
Li, Y., Gong, D., Zhou, Y., Zhang, C., Zhang, C., Sheng, Y., & Peng, S. (2022). Respiratory Adsorption of Organic Pollutants in Wastewater by Superhydrophobic Phenolic Xerogels. Polymers, 14(8), 1596. https://doi. org/10.3390/polym14081596
Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthes, V., & Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Applied geochemistry, 22(2), 249-275. https://doi.org/10.1016/j.apgeochem.2006.09.010
López-Luna, J., Ramírez-Montes, L. E., Martinez-Vargas, S., Martínez, A. I., MijangosRicardez, O. F., González-Chávez, M. D. C. A., ... & Vázquez-Hipólito, V. (2019). Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles.
SN Applied Sciences, 1, 1-19.
https://doi.org/10.1007/s42452-019-0977-3
Medyńska-Juraszek, A., Álvarez, M. L., Białowiec, A., & Jerzykiewicz, M. (2021). Characterization and sodium cations sorption capacity of chemically modified biochars produced from agricultural and forestry wastes. Materials, 14(16), 4714. https://doi. org/10.3390/ma14164714
Mehrabinia, P., & Ghanbari-Adivi, E. (2022). Examining nitrate surface absorption method from polluted water using activated carbon of agricultural wastes. Modeling Earth Systems and Environment, 8(2), 1553-1561. DOI:10.1007/s40808-021-01221-5
Mehrabinia, P., Ghanbari-Adivi, E., Fattahi, R., Samimi, H. A., & Kermanezhad, J. (2021). Nitrate removal from agricultural effluent using sugarcane bagasse active nanosorbent. Journal of Applied Water Engineering and Research, 10(3), 238-249. doi:10.1080/23249676.2021.1982030
Mehrabinia, P., Ghanbari-Adivi, E., Samimi, H. A., & Fattahi, R. (2022). Phosphate removal from agricultural drainage using biochar. Water Conservation Science and Engineering, 7(4), 405-417. DOI: 10.1007/s41101-022-00150-3
Mousavi, A., Asadi, H., Esfandbod, M. (2010). Ion Exchange efficiency of nitrate removal from water 1- equilibrium sorption isotherms for nitrate on resin purolite a-400. Water and Soil Science, 20(4), 185. https://watersoil. tabrizu.ac.ir/article_1387.html. [In Persian]
Mubarak, A.A., Ilyas, R.A., Nordin, A.H., Ngadi, N. and Alkbir, M.F.M., (2024). Recent developments in sugarcane bagasse fibrebased adsorbent and their potential industrial applications: A review. International Journal of Biological Macromolecules, p.134165. https:// doi.org/10.1016/j.ijbiomac.2024.134165
Musie, W., Gonfa, G., & Prabhu, S. V. (2023). Adsorption studies of sodium ions from aqueous solution with natural and sulfuric acid-treated bean seed husk. Water, Air, & Soil Pollution, 234(3), 170. https://doi. org/10.1016/j.agwat.2008.04.010
Nadavala, S. K., Swayampakula, K., Boddu, V. M., & Abburi, K. (2009). Biosorption of phenol and o-chlorophenol from aqueous solutions on to chitosan–calcium alginate blended beads. Journal of Hazardous Materials, 162(1), 482-489. https://doi. org/10.1016/j.jhazmat.2008.05.070
Naik, B. S., Panda, R. K., Nayak, S. C., & Sharma, S. D. (2008). Hydraulics and salinity profile of pitcher irrigation in saline water condition. Agricultural water management, 95(10), 1129-1134. https://doi. org/10.1016/j.agwat.2008.04.010
Nasri, N.S., Zain, H.M., Sidik, H.U., Abdulrahman, A., & Rashid, N.M. (2017). Adsorption Isotherm breakthrough time of acidic and alkaline gases on treated porous synthesized KOH-FeCl 3. 6H 2 O sustainable agro-based material. Chemical Engineering Transactions, 61, 1243-1248. Doi:10.3303/CET1761205
Nie, C., Yang, X., Niazi, N. K., Xu, X., Wen, Y., Rinklebe, J., ... & Wang, H. (2018). Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: a field study. Chemosphere, 200, 274-282. https://doi. org/10.1016/j.chemosphere.2018.02.134
Nikkhah, A. A., Zilouei, H., & Keshavarz, A. R. (2016). Effect of Structural Modification of Polyurethane Foam by Activated Carbon on the Adsorption of Oil Contaminants from Water. Journal of Water and Wastewater; Ab va Fazilab, 27(2), 84-93. [IN Persian]
Oliveira, E.A., Montanher, S.F., Andrade, A.D., Nobrega, J.A., & Rollemberg, M.C. (2005). Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochemistry, 40(11), 3485-3490. DOI:10.1016/j. procbio.2005.02.026
Pearce, G. K. (2008). UF/MF pre-treatment to RO in seawater and wastewater reuse applications: a comparison of energy costs.
Desalination, 222(1-3), 66-73.
https:// doi.org/10.1016/j.desal.2007.05.029Pourhakkak, P., Taghizadeh, A., Taghizadeh, M., Ghaedi, M., & Haghdoust, S. (2021). Fundamentals of adsorption technology. In Interface science and technology (Vol. 33, pp. 1-70). Elsevier.
https://doi.org/10.1016/B978-0-12-818805-7.00001-1
Rahal, Z., Khechekhouche, A., Barkat, A., Sergeevna, S. A., & Hamza, C. (2023). Adsorption of Sodium in an Aqueous Solution in Activated Date Pits. Indonesian Journal of Science and Technology, 8(3), 387-412. DOI:10.17509/ijost.v8i3.60066
Rajabi, M., Keihankhadiv, S., Suhas, Tyagi, I., Karri, R. R., Chaudhary, M., ... & Singh, P. (2023). Comparison and interpretation of isotherm models for the adsorption of dyes, proteins, antibiotics, pesticides and heavy metal ions on different nanomaterials and non-nano materials—a comprehensive review.
Journal of Nanostructure in Chemistry, 13(1), 43-65.
https://doi.org/10.1007/s40097-022-00509-x
Ramachandran, P., Vairamuthu, R., & Ponnusamy, S. (2011). Adsorption isotherms, kinetics, thermodynamics and desorption studies of reactive Orange 16 on activated carbon derived from Ananas comosus (L.) carbon. Journal of Engineering and Applied Sciences, 6(11), 15-26.
Revellame, E.D., Fortela, D.L., Sharp, W., Hernandez, R. and Zappi, M.E.( 2020). Adsorption kinetic modeling using pseudofirst order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, p.100032. https://doi. org/10.1016/j.clet.2020.100032
Sarici-Ozdemir, C. (2012). Adsorption and desorption kinetics behaviour of methylene blue onto activated carbon. Physicochemical problems of mineral processing, 48(2), 441-454.
Senturk, H. B., Ozdes, D., Gundogdu, A., Duran, C., & Soylak, M. (2009). Removal of phenol from aqueous solutions by adsorption onto organ modified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study.
Journal of hazardous materials,
172(1), 353-362.
https://doi.org/10.1016/j. jhazmat.2009.07.019
Shang, H., Ouyang, T., Yang, F., & Kou, Y. (2003). A biomass-supported Na2CO3 sorbent for flue gas desulfurization.
Environmental Science & Technology, 37(11), 2596-2599.
DOI: 10.1021/ es021026oSimonin, J. P. (2016). On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics.
Chemical Engineering Journal, 300, 254-263.
https://doi.org/10.1016/j. cej.2016.04.079
Singh, P., Garg, S., Satpute, S., & Singh, A. (2017). Use of rice husk ash to lower the sodium adsorption ratio of saline water. International Journal of Current Microbiology and Applied Sciences, 6(6), 448-458. https://doi.org/10.20546/ijcmas.2017.606.052
Siyal, A. A., Siyal, A. G., & Abro, Z. A. (2002). Salt affected soils their identification and reclamation. https://www.cabidigitallibrary. org/doi/full/10.5555/20023095851
Wu, D., Sui, Y., He, S., Wang, X., Li, C., & Kong, H. (2008). Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash. Journal of Hazardous Materials, 155(3), 415-423. https://doi.org/10.1016/j.jhazmat.2007.11.082
Wu, J., Huang, D., Liu, X., Meng, J., Tang, C., & Xu, J. (2018). Remediation of As (III) and Cd (II) co-contamination and its mechanism in aqueous systems by a novel calcium-based magnetic biochar. Journal of hazardous materials, 348, 10-19. https://doi. org/10.1016/j.jhazmat.2018.01.011
Wu, J., Zhang, L., Xia, Y., Peng, J., Wang, S., Zheng, Z., & Zhang, S. (2015). Effect of microwave heating conditions on the preparation of high surface area activated carbon from waste bamboo. High Temperature Materials and Processes, 34(7), 667-674. https://doi.org/10.1515/htmp-2014-0096
Xin, O., Yitong, H., Xi, C., & Jiawei, C. (2017). Magnetic biochar combining adsorption and separation recycle for removal of chromium in aqueous solution. Water Science and Technology, 75(5), 1177-1184. https://doi. org/10.2166/wst.2016.610
Yang, F., Zhang, S., Sun, Y., Cheng, K., Li, J., & Tsang, D.C. (2018). Fabrication and characterization of hydropHilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal.
Bioresource Technology, 265, 490-497.
doi:10.1016/j.biortech.2018.06.029Yılmazoğlu, M., 2021. Organic-Inorganic Ion Exchange Materials for Heavy Metal Removal from Water.
Remediation of Heavy Metals, 179-198.
https://doi.org/10.1007/978-3-030-80334-6_7
Zhan, T., Zhang, Y., Yang, Q., Deng, H., Xu, J., & Hou, W. (2016). Ultrathin layered double hydroxide nanosheets prepared from a waterinionic liquid surfactant-free microemulsion for pHospHate removal from aquatic systems. Chemical Engineering Journal, 302, 459-465. doi:10.1016/j.cej.2016.05.073