Asadi Zarch, M. A., Sivakumar, B., & Sharma, A. (2015). Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). Journal of hydrology, 526, 183-195.
Bahrami, M., Bazrkar, S., & Zarei, A. R. (2019). Modeling, prediction and trend assessment of drought in Iran using sandardized precipitation index. Journal of Water and Climate Change, 10(1), 181-196.
Bahrami, M., Tavakolsadrabadi, M., & Zarei, A. R. (2015). Analysis of Intensity- Duration and Frequency of Drought and Trend of Precipitation Changes in the Shiraz Synoptic Station (Iran). Irrigation and Water Engineering, 6(1), 59-74. [In Persian].
Behmanesh, J., Azad Talatappeh, N., Montaseri, M., Rezayi, H., & Khalili, K. (2015). Climate Change Impact on Reference Evapotranspiration, Precipitation Defcit and Vapor Pressure Defcit in Urmia. Water and Soil Science, 25(2), 79-91. [In Persian].
Dascălu, S. I., Gothard, M., Bojariu, R., Birsan, M. V., Cică, R., Vintilă, R., ... & Mic, R. P. (2016). Drought-related variables over the Bârlad basin (Easern Romania) under climate change scenarios. Catena, 141, 92-99.
Delghandi, M. (2016). Assessment of Climate Change Risk Impacts on Potential Evapotranspiration; Case Study Shahrood Region. Irrigation and Water Engineering, 6(3), 137-156. [In Persian].
Gao, X., Zhao, Q., Zhao, X., Wu, P., Pan, W., Gao, X., & Sun, M. (2017). Temporal and spatial evolution of the sandardized precipitation evapotranspiration index (SPEI) in the Loess Plateau under climate change from 2001 to 2050. Science of the Total Environment, 595, 191-200.
Geerts, S., Raes, D., & Garcia, M. (2010). Using AquaCrop to derive defcit irrigation schedules. Agricultural water management, 98(1), 213-216.
Goyal, R. K. (2004). Sensitivity of evapotranspiration to global warming: a case sudy of arid zone of Rajashan (India). Agricultural water management, 69(1), 1-11.
Hoseinizade, A., Seyed Kaboli, H., Zarei, H., & Akhond ALi, A. M. (2016). The Intensity and Return Period of Drought under Future Climate Change Scenarios in Dezful, Iran. Irrigation Sciences and Engineering, 39(1), 33-43. [In Persian].
IPCC- TGCIA. (1999) Guidelines on the use of scenario data for climate impact and adaptation assessment. eds. Carter, T.R., Hulme, M. and Lal, M., Version 1, 69pp. Intergovernmental Panel on Climate Change, Task Group on Scenarios for Climate Impact Assessment.
IPCC. (2007). Summary for Policymakers. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Li, X. X., Hui, J. U., Sarah, G., Yan, C. R., Batchelor, W. D., & Qin, L. I. U. (2017). Spatiotemporal variation of drought characterisics in the Huang-Huai-Hai Plain, China under the climate change scenario. Journal of integrative agriculture, 16(10), 2308-2322.
Mahmood, R., Babel, M., & JIA, SH. (2015). Assessment of temporal and spatial changes of future climate in the Jhelum River basin, Pakisan and India. Weather and Climate Extremes, 10, 40-55.
McKee, T. B., Doesken, N. J., & Kleis, J. (1993). January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17(22), 179-183.
Mishra, V., & Lilhare, R. (2016). Hydrologic sensitivity of Indian sub-continental river basins to climate change. Global and Planetary Change, 139, 78-96.
Nam, W.H., Hong, E., & Choi, J. (2015). Has climate change already affected the spatial disribution and temporal trends of reference evapotranspiration in South Korea?. Agricultural Water Management, 150, 129-138.
Oguntunde, P. G., Abiodun, B. J., & Lischeid, G. (2017). Impacts of climate change on hydrometeorological drought over the Volta Basin, Wes Africa. Global and Planetary Change, 155, 121-132.
Ruiz-Ramos, M., & Mínguez, M. I. (2010). Evaluating uncertainty in climate change impacts on crop productivity in the Iberian Peninsula. Climate Research, 44(1), 69-82.
salehpour jam, A., Mohseni Saravi, M., Bazrafshan, J., & Khalighi, S. (2015). Invesigation of Climate Change Effect on Drought Characterisics in the Future Period using the HadCM3 model (Case Study: Northwes of Iran). Journal of Range and Watershed Managment, 67(4), 537-548. [In Persian].
Shefeld, J., & Wood, E. F. (2008). Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Climate dynamics, 31(1), 79-105.
Venkataraman, K., Tummuri, S., Medina, A., & Perry, J. (2016). 21s century drought outlook for major climate divisions of Texas based on CMIP5 multimodel ensemble: Implications for water resource management. Journal of hydrology, 534, 300-316.
Wang, Z., Zhong, R., Lai, C., Zeng, Z., Lian, Y., & Bai, X. (2018). Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21s century. Agricultural and Fores Meteorology, 249, 149-162.
Yevjevich, V. M. (1967). Objective approach to defnitions and invesigations of continental hydrologic droughts, An (Doctoral dissertation, Colorado State University. Libraries).
Zareabyaneh, H., GHobaeisoogh, M., & Mosaedi, A. (2015). Drought Monitoring Based on Standardized Precipitation Evaoptranspiration Index (SPEI) Under the Effect of Climate Change. Water and Soil, 29(2), 374-392. [In Persian].
Zarei, A. R., Moghimi, M. M., & Bahrami, M. (2019). Comparison of reconnaissance drought index (RDI) and effective reconnaissance drought index (eRDI) to evaluate drought severity. Susainable Water Resources Management, 5(3), 1345-1356.