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Abstract
Climate change, as one of the global challenges of the present century, has 
profound impacts on water resources and agriculture. Increase in temperature 
and decrease in rainfall in arid and semi-arid regions have made the optimal 
water resource management a top priority. In countries facing climate change 
and drought, accurate estimation of evapotranspiration plays a vital role 
in water resource management and ensuring food security. One of the key 
factors affecting evapotranspiration is the vapor pressure deficit (VPD), 
which significantly impacts the accuracy of related calculations. This study 
focuses on predicting the vapor pressure deficit using advanced machine 
learning techniques. The methods employed include Linear Regression (LR), 
Generalized Additive Model (GAM), Random Subspace (RSS), Random 
Forest (RF), and M5 Pruned model (M5P). In this study, monthly average 
data, including temperature, humidity, precipitation, and vapor pressure 
deficit, were extracted from the Japanese 55-year Reanalysis (JRA-55) 
database for the period from 1958 to 2023. The analysis on the vapor pressure 
deficit data in Birjand, Sarayan, Qaen, and Tabas showed that the annual 
average VPD increased by 6 Pa, 10 Pa, 4 Pa, and 5 Pa, respectively. In the 
next step, the extracted data for temperature, precipitation, and humidity were 
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used as input variables, and VPD was used 
as the target variable in machine learning 
algorithms. Model performance was 
evaluated using root mean square error 
(RMSE), mean absolute error (MAE), 
Pearson correlation coefficient (CC), and 
Kling-Gupta efficiency (KGE). Results 
showed that the GAM model outperformed 
other models in all regions. The evaluation 
indices for each region were as follows:  
Birjand [RMSE=0.308, MAE=0.247, 
KGE=0.914, and CC=0.920], Sarayan 
[RMSE=0.401, MAE=0.303, KGE=0.937, 
and CC=0.951], Qaen [RMSE=0.072, 
MAE=0.055, KGE=0.987, and CC=0.997] 
and Tabas [RMSE=0.230, MAE=0.184, 
KGE=0.920, and CC=0.942]. Predictions 
showed that, over the next 10 years, 
the annual average VPD in the studied 
regions will significantly increase. This 
increment is as follows: Birjand 9 Pa, 
Sarayan 10 Pa, Qaen 7 Pa, and Tabas 5 Pa. 
This increase signifies serious challenges 
for water resources and an increase in 
water consumption. Eventually, this study 
suggests the GAM model as an effective 
tool for future research, especially for use 
in the development of smart irrigation 
systems, which play a crucial role in 
sustainable water resource management.

Introduction
Agriculture consumes the most water, 
using 70 % of all freshwater withdrawals 
on average. However, in some 

underdeveloped nations, this percentage 
can reach 95 % (Wada & Bierkens., 2014). 
To ensure future food security, improving 
irrigation efficiency is essential to produce 
more crops using less water (Smidte et al., 
2016). Even with advanced biotechnology 
and conventional breeding techniques, 
achieving significant yields is only possible 
with sufficient water and proper crop and 
soil management (Ahmar et al., 2020). 
Vapor pressure deficit (VPD) is a critical 
parameter in precise agricultural water 
management, impacting moisture flow 
from the surface to the atmosphere and the 
water balance at national and global levels 
(Kimball et al., 1997; Qiu & Katul., 2020). 
It affects plant physiology and significantly 
influences plant water requirements and 
evapotranspiration (Grossiord et al., 2020; 
Qiu et al., 2019; Yuan et al., 2019). Multiple 
studies show that VPD significantly 
impacts evaporation and transpiration 
(Zhang et al., 2018). The amount of vapor 
pressure deficit represents the difference 
between saturation and actual pressures 
(Rawson et al., 1977). According to the 
Clausius-Clapeyron equation (Iribarne 
& Godson, 1981; Bolton, 1980), the 
saturation vapor pressure of water 
increases by approximately 7% for each 
degree Kelvin increases in atmospheric 
temperature. If the increase in saturation 
vapor pressure does not correspond 
with the actual atmospheric water vapor 
concentration, the vapor pressure deficit 
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will increase. Relative humidity, which 
measures the difference between the actual 
vapor pressure of water and the saturation 
pressure, fluctuates significantly in humid 
areas and inland regions (Pierce et al., 
2013). Although the long-term trend of 
the global average relative humidity at the 
earth’s surface is low. (Willett et al., 2008; 
Dai, 2006) a significant decrease has been 
observed after 2000 (Simmons et al., 2010; 
Willett et al., 2014), indicating a severe 
increase in the vapor pressure deficit at the 
surface. Recent research has shown that the 
increase in vapor pressure deficit, rather 
than changes in precipitation, significantly 
impacts crop yields, plant transpiration, and 
evaporation (Konings et al., 2017; Ding et 
al., 2018; Restaino et al., 2016; Carnicer 
et al., 2013). Furthermore, the increase in 
vapor pressure deficit alters plant stomatal 
activity, reducing vegetation cover over 
vast areas of land (Fletcher et al., 2007). 
VPD has a significant impact on plant 
production in forested areas and lands with 
trees and shrubs, whereas soil moisture 
plays a more critical role in rangelands 
(Sun et al., 2024). Currently, the earth is 
experiencing atmospheric drying across 
the globe due to increased vapor pressure 
deficiency, and it is predicted that this 
condition will worsen with the decline in 
global climate quality. (Dai et al., 2018; 
Ficklin & Novick, 2017; Liu & Sun., 2017; 
Wang et al., 2012). This effect is mainly due 
to the increase in saturated vapor pressure, 

which raises global temperatures, and the 
decrease in actual vapor pressure, which 
affects various hydrological phenomena 
(Ficklin & Novick., 2017). As a result 
of the increased vapor pressure deficit in 
agricultural and non-agricultural plants 
(Otieno et al., 2012), we are witnessing 
a decrease in plant productivity, which in 
turn leads to an increase in adverse climatic 
events such as droughts. In arid and semi-
arid regions, the lack of atmospheric 
vapor pressure reduces the quality and 
productivity of agricultural products 
during the spring and summer growing 
seasons, especially in greenhouses. 
According to previous studies, increased 
humidity reduces leaf area and thickness 
(Devi et al., 2018). If the vapor pressure 
deficit is high, it delays leaf growth; if 
the atmosphere is humid, leaf wilting and 
disruption of xylem function may occur 
during the tree’s growth period (Sellin et 
al., 2019). Actual VP (ea) and standard 
VP (es) are widely used to determine the 
level of vapor pressure deficit. The present 
study’s findings are essential for guiding 
future research in these areas and attracting 
policymakers’ attention to the impact of 
vapor pressure deficit on vegetation and the 
overall hydrological cycle. Most studies 
have used vapor pressure deficit as one 
of the input variables similar to the model 
of the present study to develop machine 
learning-based models for predicting 
various hydro-climatic variables and 
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estimating the water needs of vegetation, 
which emphasizes the importance of 
improving their prediction accuracy and 
precision. (Feng et al., 2019; Huntington 
et al., 2020; khosravi et al., 2021; Mokhtar 
et al., 2021; Emami et al., 2022). In South 
Khorasan, more than 90 percent of water is 
used for agriculture. Therefore, accurately 
estimating the evapotranspiration for 
agricultural products is essential to achieve 
sustainability under climate change 
conditions and Iran’s limited water share. 
Monthly vapor pressure deficits can be 
helpful tools for scheduling irrigation, as 
they reflect the atmospheric demand for 
water by plants. The goal of irrigation 
scheduling is to use the appropriate 
amount of water at the right time to meet 
crops’ water needs and optimize yield 
while minimizing water consumption. 
As mentioned, the vapor pressure deficit 
is the difference between the amount of 
moisture in the air and the maximum 
amount of moisture the air can hold. This 
index is influenced by temperature and 
relative humidity and can be calculated 
using meteorological data. High values 
of vapor pressure deficit indicate a high 
atmospheric demand for water. This 
means that plants release water into the 
atmosphere more quickly and may require 
more water. Farmers can monitor their 
area’s vapor pressure deficit values and 
adjust their irrigation practices to utilize 
the predicted monthly vapor pressure 

deficit for irrigation scheduling. For 
example, when the vapor pressure deficit 
is high, farmers may need to irrigate more 
to ensure the plants have enough water. 
Conversely, farmers can reduce water 
consumption when the vapor pressure 
deficit is low while maintaining optimal 
crop growth. The predicted monthly vapor 
pressure deficit can also be used to schedule 
irrigation in advance. Farmers can predict 
periods of high atmospheric demand for 
water by monitoring the forecast of vapor 
pressure deficit and schedule irrigation 
accordingly. This method can help farmers 
optimize water consumption and prevent 
over- or under-irrigation, which may lead 
to reduced crop yields and water wastage. 
The predicted monthly vapor pressure 
deficit can be a helpful tool for irrigation 
scheduling, allowing farmers to optimize 
water use and increase crop yields while 
minimizing water waste. To obtain 
accurate parameters such as soil moisture, 
soil temperature, and climatic parameters, 
the JRA-55 database can be used. In 
Iran, no studies or research have yet been 
conducted in the field of agriculture using 
JRA-55 data. (Mollasharifi et al., 2019) 
in their study of the impact of the North 
Atlantic Oscillation on the relationship 
between the North Atlantic storm tracks 
and the Mediterranean, have used NCPE/
NCAR and JRA-55 data. In another study, 
(Azarm et al., 2022) have used the JRA-
55 database for climatology of Bandal 
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events. However, this database has not 
yet been used in the fields of agriculture, 
water resources and climate change, 
which highlights the importance of this 
study. Considering the negative impacts 
of climate change in South Khorasan 
and the limitations of water resources in 
this province, the development of new 
methods and the use of machine learning 
algorithms instead of traditional irrigation 
methods must receive more attention 
from researchers to maintain sustainable 
agriculture and improve water use 
efficiency.
In this study, the prediction of the VPD 
parameter using machine learning 
algorithms was examined, marking the 
beginning of a path for future research 
aimed at developing intelligent irrigation 
systems to mitigate the effects of climate 
change and adapt drought conditions. The 
aim of this research is to assess the long-
term predictive capabilities of several 
algorithms such as Linear Regression 
(LR), General Additive Model (GAM), 
Random SubSpace (RSS), Random Forest 
(RF), and M5P for Vapor Pressure Deficit 
(VPD) values in four regions of South 
Khorasan, including Tabas, Birjand, Qaen, 
and Sarayan, facing serious water resource 
limitations.
Additionally, selecting the best machine 
learning model for predicting VPD based 
on statistical indicators such as accuracy, 
high performance, and low statistical errors 

is another goal. Moreover, this paper aims 
to familiarize water resource researchers 
with the JRA-55 database system, 
particularly in the context of agricultural 
approaches and vapor pressure deficit.
Materials and Methods 
Study area
South Khorasan Province is one of the 
easternmost provinces of Iran, covering 
an area of approximately 150,000 square 
kilometers, which accounts for 22.6% of 
the country’s total area. The province is 
located between 57 degrees and 1 minute 
to 60 degrees and 57 minutes of eastern 
longitude, and between 30 degrees and 32 
minutes to 34 degrees and 36 minutes of 
northern latitude. According to the latest 
administrative divisions, the province 
currently includes 12 counties, 32 cities, 
28 districts, and 66 rural districts. Due to 
the province’s location between deserts 
and scattered mountain ranges, the climate 
in the southern and southwestern regions 
is hot and dry, while the climate in the 
northern and northeastern mountainous 
areas is semi-arid, mild, and cold. The 
mountain ranges, with their northwestern-
southeastern orientation, contribute to 
the diversity and extreme fluctuations 
in the region’s climate. The province 
has 35 study areas for water resource 
management, of which 8 are classified 
as critical prohibited areas, 18 as critical 
areas, and 9 as accessible areas. According 
to recent statistics, the long-term average 
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annual rainfall in the province is about 113 
millimeters, indicating a severe shortage 
of water resources. This climatic condition 
and the limitation of water resources 
significantly affect agriculture and the 
livelihood of the local population.  In this 
province around 88% of groundwater 
resources are used for agricultural purposes. 
This comes from three primary sources: 
wells (73%), qanats (23%), and springs 

(4%). The province has been dealing with 
over two decades of continuous drought 
and significant reductions in rainfall, 
which have severely affected both surface 
and groundwater resources. This heavy 
reliance on groundwater underscores 
the critical need for sustainable water 
management and policies to combat the 
ongoing water scarcity crisis

 Fig 1. Study area

Introducing the Japanese 55-year 
Reanalysis 
JRA-55 (Japanese 55-Year Reanalysis) is 
a global atmospheric reanalysis dataset 
developed by the Japan Meteorological 
Agency (JMA). Spanning the period from 
1958 to the present, it is a crucial resource 
for studying climate variability and long-
term changes. JRA-55 was designed 
to enhance previous versions, such as 
JRA-25, by addressing issues like model 
biases and gaps in observational data. Key 
features of JRA-55 include:
1. Data Sources: It incorporates diverse 

observational data from sources 
like weather stations, satellites, and 
aircraft, ensuring a consistent and 
comprehensive atmospheric dataset.

2. Spatial and Temporal Coverage: 
With more than five decades of data, 
JRA-55 provides detailed climate 
information applicable to various 
fields, including climate research, 
weather forecasting, and hydrology.

3. Improvements: Enhancements in 
areas such as temperature analysis, 
long wave radiation schemes, and the 
representation of oceanic fronts make 
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JRA-55 more accurate than earlier 
reanalysis products.

4. Applications: Widely used in 
atmospheric studies, climate modeling, 
and global trend assessments, JRA-55 
is particularly valuable for research on 
climate variability and hydrological 
cycles.

This dataset supports climate scientists, 
meteorologists, and researchers in better 
understanding climate systems, evaluating 
the impacts of climate change, and informing 
decisions related to environmental 
policies and resource management. 
For more detailed information, visit the 
official JRA-55 website.

Temperature, humidity, precipitation, and 
vapor pressure deficit data were extracted 
monthly from the JRA-55 database in 
NC format files. Then, using the NC files 
containing monthly statistics for one year 
(12 months), the Make NetCDF Raster 
Layer tool in ArcMap software was used 
to convert these files into raster format. 
Subsequently, using the Zonal Statistics 
as Table tool and the boundary layer of 
the study areas, including Qaen, Birjand, 
Sarayan, and Tabas, the average data within 
the borders of these areas were calculated. 
(Fig 2 shows the process of extracting data 
from JRA-55 using ArcMap software).

 
  
  

 

Fig 2. The process of extracting data from the JRA-55 database using ArcMap software.

Machine learning Model description
The present study examines the 
performance of machine learning models 
in estimating monthly vapor pressure 
deficit (VPD) in four study areas of South 
Khorasan Province. MATLAB software 

was used to run the models. The data for 
this region is divided into two sections. 
The first group consists of 70% for 
training, and the second group consists 
of 30% for testing. This study analyzes 
five machine learning models: linear 
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regression, generalized additive model, 
random subset, random forest, and M5P 
model. The following sections provide a 
complete explanation of these models.
1. Linear regression (LR)
Linear regression is one of the simplest 
and most widely used statistical modeling 
methods, which models the linear 
relationship between a dependent variable 
and one or more independent variables. In 
multiple linear regression, where there is 
more than one independent variable, the 
model is expanded as follows:

(1)

x1,x2,…,xp  : Independent variables
  are regression coefficients for each 
independent variable indicate the effect of 
changes in each of these variables on y.
2. General additive model (GAM)
GAM is a combination of generalized 
linear models with additive models. These 
models have been presented to create a 
unified method for statistical models such 
as linear, logistic, and Poisson regression. 
The general idea of this method is that 
instead of assuming various functions 
in the mentioned regressions, knowing 
the data distribution—which generally 
comes from a logical assumption of the 
problem—one can obtain their estimate 
for the model. This model consists of three 
components:
1- A distribution for the target variable 
y, which is usually chosen from the 
exponential family with dispersion 

parameter.

(2)
Pre-dispersion is used for modeling high 
and low variances

(3)
Pre-dispersion is used for modeling high. 
The link function g is a strictly monotonic 
function that connects the two above 
components with low variances.
3. Random Sub Space (RSS)
The RSS model trains and integrates 
multiple categories in spaces with different 
features. This framework categorizes 
several subsets of data for training, which 
later serves as the basis for training and 
considers clustering and self-supervised 
approaches. While utilizing artificial 
neural networks, decision trees, or other 
algorithms, this framework demonstrates 
nonlinear relationships. This system’s 
classification is developed according 
to the RSS framework and is related to 
specific data features. The output of all 
classifications is easily combined by the 
voting system in the model. This method 
improves the ability of each weak classifier. 
(Skurichina & Duin., 2002) presented the 
RSS algorithm as follows.

(4)
In this formula, Cd(S) represents the 
classifier (d = 1,2…D); δi,j denotes the 
Kronecker delta, and y = (-1,1) signifies 
the class label or classification decision

y = β0 + β1x1 + β2x2 +⋯+ βpxp 

𝑓𝑓𝑌𝑌(𝑦𝑦𝑦𝑦𝑦𝑦, 𝜏𝜏) = ℎ(𝑦𝑦, 𝑐𝑐)exp(𝑏𝑏
(𝑦𝑦)𝑇𝑇𝑇𝑇(𝑦𝑦) − 𝐴𝐴(𝑦𝑦)

𝑑𝑑(𝜏𝜏) ) 

𝜂𝜂 = 𝑋𝑋𝑋𝑋 

𝛾𝛾(𝑆𝑆) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∑𝛿𝛿𝑠𝑠𝑎𝑎𝑠𝑠(𝑐𝑐𝑑𝑑(𝑠𝑠),𝑦𝑦 
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4. Random Forest (RF)
Random forest is a type of ensemble learning 
algorithm that combines multiple decision 
trees for prediction. Each decision tree in 
the random forest is trained on a random 
subset of the training data and a random 
subset of the features. Then, the random 
forest is determined by aggregating the 
predictions of all the decision trees. This 
approach allows the random forest to be 
very accurate and resistant to the problem 
of overfitting (a common issue in machine 
learning where the model performs well on 
training data but poorly on new data).

(5)
The RF technique can significantly enhance 
the estimation efficiency of the system with 
minimal possible errors and the least noise. 
RF can effectively work with large-scale 
datasets with high dimensions (Khosravi et 
al., 2019; Li et al., 2022)
5.M5 Pruned (M5P)
Reconstructing the M5 Quinlan algorithm 
helps in generating the M5P model tree. 
The M5P algorithm is reconstructed 
to the leaf nodes with a convolution 
decision tree and a linear regression 
function (Blaifi et al., 2018). The M5P 

model algorithm is based on a numerical 
prediction system. The linear regression 
model is stored in each leaf, which helps 
identify the corresponding point cluster 
value that reaches the leaf. (Shamshirband 
et al., 2020) identify the best feature split 
criterion for partitioning a specific section 
(T) of training data related to a specific 
node. The standard deviation of the batch 
related to T is measured as the error for 
that node. In addition, the reduction of 
potential error is determined by making 
estimates at each node. The selection of 
features used for splitting increases the 
potential error reduction of the associated 
node. Minimizing the expected error with 
standard deviation reduction (SDR) is 
performed as follows.

(6)

In this formula, Ti corresponds to T1, T2, 
T3, ... obtained from the division of nodes 
based on selected features.
 Table 1 and Figure 3 shows the workflow 
diagram related to data collection, 
processing, and modeling of vapor 
pressure deficit based on machine learning 
algorithms from 1955 to 2023.

Model name Description of parameters Cross-
validation Input Target 

Linear regression  
(LR) 

Batch size-100, Debug = False, Eliminate Collinear 
Attribute =True, Minimal = False 

K – fold;k=5 

Temp 
Wind 

Humidity 
Precipitation 

 
VPD 

 

Random Subspace 
(RSS) 

Batch size-100, Classifier = REPTree, random seed-1, 
subspace size = 0. 5, numbers of executions slots = 1, 

number of iterations= 10 
M5 Pruned (M5P) Batch size-100, Minimum number of instances = 4 
General additive 
model (GAM) 

Batch size-100, Name-value arguments=optimize 
Hyper parameters, parameters to optimize=auto, 

 

𝑑𝑑(𝑥𝑥, 𝑦𝑦) = √𝐼𝐼 − 𝑠𝑠(𝑥𝑥, 𝑦𝑦) 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑠𝑠𝑠𝑠(𝑇𝑇) −∑
|𝑇𝑇𝑖𝑖|
𝑇𝑇 × 𝑠𝑠𝑠𝑠(𝑇𝑇𝑖𝑖) 

Table 1. The parameters of the machine learning algorithm used for modeling VPD in the 
study regions.
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Evaluation of model performance
The performance of machine learning 
models has been evaluated using the 
following four performance metrics: 
Correlation Coefficient (CC), Mean 
Absolute Error (MAE), Root Mean Square 
Error (RMSE), and Kling-Gupta Efficiency 
(KGE). These indices have been calculated 
using the following equations: where N is 
the total number of measurements, Xa is 
the observed values, Ya is the estimated 
values,  is the mean of the observed values 
in the X variables, and  is the mean of the 
estimated values in the Y variables.

(7)

(8)

(9)

(10)
Results and Discussion
Evaluation of the statistical 
performance of machine learning 
models based on VPD prediction.
The graph of vapor pressure deficit 
changes from 1958 to 2023 for the regions 
of Birjand, Qaen, Sarayan, and Tabas is 
shown in Figure 4.
According to the figure 4, the average 
increase in vapor pressure deficit is 6 Pa 
in Birjand, 10 Pa in Sarayan, 4 Pa in Qaen, 
and 5 Pa in Tabas.The performance of the 
LR, GAM, RSS, RF, and M5P models for 
monthly vapor pressure deficit prediction 

 
Fig 3. Workflow diagram related to data collection, processing, and modeling of vapor 

pressure deficit based on machine learning algorithms

𝐶𝐶𝐶𝐶 =
∑ (𝑋𝑋𝑎𝑎 − �̅�𝑋)(𝑌𝑌𝑎𝑎 − �̅�𝑌)𝑁𝑁
𝑎𝑎

√∑ (𝑋𝑋𝑎𝑎 − �̅�𝑋)2 ∑ (𝑌𝑌𝑎𝑎 − �̅�𝑌)2𝑁𝑁
𝑎𝑎

𝑁𝑁
𝑎𝑎

 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁∑|𝑋𝑋𝑎𝑎 − 𝑌𝑌𝑎𝑎|

𝑁𝑁

𝑎𝑎
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √1𝑁𝑁∑(𝑋𝑋𝑎𝑎 − 𝑌𝑌𝑎𝑎)2
𝑁𝑁

𝑎𝑎
 

𝐾𝐾𝐾𝐾𝐾𝐾 = 1 − √(𝑟𝑟 − 1)2 + (𝛼𝛼 − 1)2 + (𝛽𝛽 − 1)2 
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using temperature, precipitation, wind 
speed, and humidity data was evaluated. 
In the process of model implementation, 
the Cross-Validation K-fold statistical 
technique was used to assess the models’ 
performance and reduce issues caused by 
overfitting or underfitting. This method 
helps ensure that the model performs well 
on new data. In this method, the data is 
divided into K subsets (folds). In each 
iteration, one of these subsets is used 
as test data, and the remaining subsets 
are used as training data. Four statistical 
indices, CC, MAE, RMSE, and KGE, 
were used to evaluate the models for the 
regions of Birjand, Qaen, Sarayan, and 
Tabas during both training and testing 
stages. The criterion for selecting the 
best model was the lowest error value in 
the test phase. In the Birjand region, the 
results showed that the GAM model had 
the best performance for all evaluation 

indices, with the highest values for CC 
and KGE and the lowest values for MAE 
and RMSE. The performance of GAM, in 
terms of these statistics, was better than 
the other models. The LR model was the 
second best model, with the lowest RMSE 
and MAE values and the highest KGE 
and CC values. The third model, which 
showed good performance for predicting 
vapor pressure deficit, was the RF model. 
The performance of the RSS model was 
average, and the M5P model showed poor 
performance in predicting VPD (Table 1).
In the Qaen region, by evaluating the 
performance of the models in the test 
phase, it was found that the GAM model 
had the best performance, with the highest 
value for CC and the lowest values for 
MAE, RMSE, and also a KGE close to 1. 
In this region, after the GAM model, the 
RF and LR models were selected as the 
best models, and the performance of the 

  

  
 Fig4. Comparison chart of conversion in vapor pressure deficit
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RSS model was average, while the M5P 
model had a poor performance compared 

to the other models.
By evaluating the performance of the 

Testing period (2003-2023) Training period (1958-2003) Model CC KGE MAE RMSE CC KGE MAE RMSE 
0.931 0.928 0.252 0.312 0.939 0.914 0.231 0.291 LR 
0.952 0.943 0.206 0.259 0.960 0.934 0.183 0.237 GAM 
0.907 0.727 0.358 0.462 0.930 0.729 0.326 0.453 RSS 
0.912 0.911 0.264 0.352 0.979 0.968 0.13 0.171 RF 
-0.027 -0.066 0.965 1.213 0.666 0.563 0.394 0.781 M5P 

 

Table 2. Performance of the models under training and testing conditions (Birjand) 

  

Fig 5. Graph of the correlation results taken from GAM model for the Birjand region.

Testing period (2003-2023) Training period (1958-2003) model CC KGE MAE RMSE CC KGE MAE RMSE 
0.996 0.994 0.059 0.083 0.999 0.999 0.035 0.045 LR 
0.997 0.996 0.058 0.077 0.999 0.999 0.027 0.035 GAM 
0.990 0.889 0.146 0.200 0.984 0.888 0.134 0.214 RSS 
0.980 0.960 0.152 0.189 0.978 0.968 0.156 0.192 RF 
0.683 0.514 0.648 0.836 0.754 0.598 0.360 0.704 M5P 

 

Table3. Performance of the models under training and testing conditions (Qaen) 

  
Fig 6. Graph of the correlation results in the GAM model for the Qaen region

models in the Sarayan region, the GAM 
model was selected as the best model in 
both the test phases, with the maximum 

values for KGE and CC and the minimum 
values for MAE and RMSE. In this region, 
the second-best model was LR. The RF 
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model ranked third with a slight difference 
in performance. The RSS model showed 
average performance, similar to the other 

regions. The M5P model was also selected 
as a model with poor performance.
In the Tabas study area, the GAM model 

Testing period (2003-2023) Training period (1958-2003) model CC KGE MAE RMSE CC KGE MAE RMSE 
0.952 0.924 0.312 0.393 0.942 0.919 0.341 0.424 LR 
0.956 0.953 0.290 0.378 0.975 0.958 0.223 0.284 GAM 
0.945 0.778 0.435 0.567 0.952 0.756 0.406 0.565 RSS 
0.942 0.929 0.338 0.440 0.987 0.976 0.160 0.205 RF 
0.165 0.079 1.229 1.609 0.644 0.492 0.586 1.156 M5P 

 

Table 4. Performance of the models under training and testing conditions (Sarayan)

  
 Fig 7. Graph of the correlation results in the GAM model for the Sarayan region

with the following error values [RMSE = 
0.226, MAE = 0.180, KGE = 0.915, CC 
= 0.945, was selected as the best model. 
The second model, which showed good 
performance for predicting vapor pressure 
deficit, was the LR model, with a very 

slight difference from the RF model. As 
a result, the RF model was chosen as the 
third model. Additionally, the RSS model 
showed average performance, and the 
M5P model had poor performance in this 
region.

Testing period (2003-2023) Training period (1958-2003) model CC KGE MAE RMSE CC KGE MAE RMSE 
0.919 0.914 0.221 0.275 0.937 0.910 0.199 0.248 LR 
0.945 0.915 0.180 0.226 0.972 0.949 0.132 0.166 GAM 
0.913 0.760 0.289 0.370 0.945 0.766 0.245 0.338 RSS 
0.919 0.912 0.221 0.278 0.982 0.974 0.106 0.135 RF 
0.390 0.318 0.586 0.785 0.686 0.572 0.304 0.615 M5P 

 
Considering the GAM model as the best 
model for predicting vapor pressure deficit 
in the Birjand, Qaen, Tabas, and Sarayan 
regions, predictions for vapor pressure 
deficit for the next 10 years in these regions 
were made. The results of the model 
showed an average annual vapor pressure 

deficit increase of 10 Pas in Sarayan, 9 Pa 
in Birjand, 7 Pa in Qaen, and 5 Pa in Tabas. 
Figure (9). Predicted annual average vapor 
pressure deficit results in the GAM model 
for regions a- Sarayan, b- Birjand, c- Tabas, 
and d- Qaen.

Table 5. Performance of the models under training and testing conditions (Tabas)
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Conclusion
In this study, data extraction process from 
the JRA-55 database in the regions of 
Birjand, Qaen, Sarayan, and Tabas were 
discussed. The data analysis indicated an 
annual increase in vapor pressure deficit 
over 65 years in these regions. To predict 
vapor pressure deficit in these areas, 
machine learning techniques, including 

LR, RSS, GAM, M5P, and RF, were used. 
The results showed that the geographic 
region did not affect the performance of the 
machine learning models, as GAM was the 
best model for estimating vapor pressure 
deficit across all areas. The GAM model 
demonstrated high ability to uncover 
complex, nonlinear relationships between 
independent and dependent variables, 

  
 

Fig 8. Graph of the correlation results in the GAM model for the Tabas region

b 

 

a 

 
d 

 

c 

 
 Fig 9. The results of the annual average vapor pressure deficit prediction in the GAM model.
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suggesting that most of the data used in this 
study had nonlinear relationships. The LR 
model, on the other hand, is more suitable 
for simple and linear modeling without 
deep complexity, which could explain 
its error weaknesses due to the nonlinear 
relationships of climatic parameters. The 
RF model, based on decision trees, uses 
the combination of multiple trees to reduce 
variance. Its weakness was its sensitivity 
to small changes in data (vapor pressure 
deficit values). The RSS model is useful in 
analyzing spatial and nonlinear data, but the 
deep complexity and multiple interactions 
in the data used in this study posed a 
limitation for this model. The M5P model, 
which combines decision tree models 
and linear regression, is highly effective 
in uncovering both linear and nonlinear 
relationships. However, it tends to make 
errors with highly complex data, leading 
to the highest error among the models in 
this study. The GAM model’s predictions 
showed a more significant increase in 
vapor pressure deficit than the long-term 
statistics in the studied regions, signaling 
a potential increase in water consumption 
in the region’s warm and dry climatic 
conditions. Finally, this study recommends 
using the GAM model for future research, 
particularly in smart irrigation systems.
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