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Abstrsct
This study investigates the effect of climate change on annual rainfall and 
runoff of Kasilian catchment through two distinct approaches. Firstly, it 
utilizes hybrid models by integrating the Hydrologic Engineering Center’s 
Hydrologic Modeling System (HEC-HMS) with Artificial Neural Networks 
(ANN), Support Vector Machines (SVM), Adaptive Neuro-Fuzzy Inference 
System (ANFIS), and Gene Expression Programming (GEP) separately, as 
well as employing the Long Ashton Research Station Weather Generator 
(LARS-WG). Secondly, it employs Google Earth Engine (GEE) to analyze 
changes in annual rainfall and runoff for the observed period, compensating 
for incomplete data from hydrometric and climatological stations. The results 
demonstrate that under the SSP585 scenario, from various climate models in 
LARS WG and when employing hybrid models, the median annual rainfall is 
projected to increase in the future compared to the base period, while the median 
annual runoff is expected to decrease due to rising temperatures and increased 
evapotranspiration. Consistent with these projections, GEE data from 1981 
to 2023 also indicates an increase in annual rainfall and a decrease in annual 
runoff. Additionally, there is a reduction in annual erosion and sedimentation 
rates, attributed to the reduced capacity of runoff to transport sediment. These 
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findings highlight the potential for more 
extreme rainfall events, increased annual 
precipitation, and a subsequent decrease 
in annual runoff and sediment load in the 
Kasilian catchment, providing essential 
perspectives for managing water resources.

Introduction
The primary sources of uncertainty in 
climate change impact studies stem from 
the structure of Global Climate Models 
(GCMs) or climate data, the structure of 
hydrological models, and the parameters 
used within hydrological models. Different 
climate models produce varying rainfall 
patterns, resulting in different runoff 
magnitudes (Hajian, 2013). For example, 
Abbaspour et al. (2009) found increased 
precipitation in northern Iran up to 40% 
for future periods, while Babaeian et al. 
(2007) observed a 2% decrease in rainfall 
for Mazandaran Province for 2010-2039 
compared to 1976-2005. The variability 
in rainfall predictions highlights the 
necessity of using multiple climate models 
in climate change impact studies. Many 
studies have traditionally relied on a single 
GCM, underscoring the need for diverse 
model applications to better understand 
potential impacts on water resources.
Bae et al. (2011) examined uncertainties 
in climate change impact studies in the 
Chungju Dam Catchment, South Korea, 
using three semi-distributed hydrological 
models (PRMS, SLURP, and SWAT) 

with multiple potential evapotranspiration 
methods, and 39 climate change scenarios 
across two future periods (2011-2040 
and 2071-2100). The models performed 
identically for calibration and validation 
with observed data, but showed varying 
runoff results with GCM outputs. 
Runoff changes were significant during 
winter (dry period) and minor in other 
seasons, influenced by model structure, 
GCM type, and evapotranspiration 
methods. This highlights the need for 
careful selection of hydrological models, 
GCMs, and parameterization methods in 
climate impact studies, as these choices 
significantly affect the results.
Shifteh Some’e et al. (2012) analyzed the 
percent change of annual and seasonal 
rainfall data for 28 synoptic stations 
of Iran over the period 1967-2006. The 
annual rainfall increased by 0-10%, spring 
rainfall increased by 10%, summer rainfall 
increased by 0-30%, autumn rainfall 
increased by 0-10%, and a noticeable 
decrease of 10-20% in the winter rainfall 
was observed over the period 1967-2006, 
for northern parts (southern Caspian Sea 
coastal area).
The following studies collectively 
demonstrate the effectiveness of various 
advanced modeling approaches in 
accurately predicting and simulating 
hydrological processes across different 
regions. One study compared the 
performance of Gene Expression 
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Programming (GEP), Adaptive Neuro-
Fuzzy Inference System (ANFIS), and 
Support Vector Machine (SVM) models 
in simulating rainfall using historical 
data from the Kiyav-Chay River basin in 
Iran. The GEP model outperformed the 
ANFIS and SVM models, achieving the 
highest R² value and the lowest RMSE 
and MAE values, concluding that GEP is 
a reliable and accurate method for rainfall 
simulation in this region (Tabatabaei et 
al., 2021). Another study reviewed LS-
SVM, GEP, and ANFIS-PSO models for 
simulating rainfall-runoff in the Halil 
River, determining that the ANFIS-PSO 
model outperformed others with the 
lowest RMSE (0.35) and highest R² (0.92) 
values (Kavoosi & Khozeymehnezhad 
2021). Different studies in the Anandpur 
and Champua catchments of the Baitarani 
catchment, India, evaluated ANN, ANFIS, 
and SRC models, with ANN and ANFIS 
models performing best for sediment load 
simulation (Kumaret al., 2019).
A study introduced a hybrid model named 
Ia-LSTM, which combines the physical-
based HEC-HMS model with the data-
driven LSTM model to optimize the 

“initial loss” (Ia) and accurately capture the 
rainfall-runoff relationship. This model 
was tested in the Yufuhe basin in Jinan 
City, Shandong province, China. The Ia-
LSTM model consistently demonstrated 
superior performance compared to the 
individual HEC-HMS and LSTM models. 

It achieved impressive average Nash-
Sutcliffe Efficiency (NSE) values of 0.873 
and 0.829, and average R² values of 0.916 
and 0.870 during calibration and validation, 
respectively (Zhang et al., 2022).
Asadi and Santos (2022) created a hybrid 
model that integrates artificial intelligence 
(ANN) with the SWAT semi-distributed 
hydrological model, achieving high 
accuracy with NSE values of 0.85 for 
calibration and 0.82 for validation. This 
research was conducted in the Upper 
Sabarmati River Basin in Gujarat, India. 
In another study, Gebremichael and Hailu 
(2024) compared the HEC-HMS model 
with machine learning models (SVM, 
ANN, and ANFIS) for rainfall-runoff 
prediction, discovering that the ANFIS 
model outperformed the others with 
NSE values of 0.88 for calibration and 
0.85 for validation. This study took place 
in the Rappahannock River basin near 
Fredericksburg, Virginia, USA.
This study seeks to improve the 
performance of the HEC-HMS model 
by integrating it with Artificial Neural 
Networks (ANN), Gene Expression 
Programming (GEP), Support Vector 
Machines (SVM), and Adaptive Neuro-
Fuzzy Inference Systems (ANFIS). These 
integrated approaches, collectively known 
as hybrid models, will then be applied to 
climate change studies. The objectives of 
this study are:
1.	 To evaluate the accuracy of these 
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hybrid models in simulating rainfall-
runoff processes in the Kasilian 
Catchment.

2.	 To evaluate the effect of climate change 
on runoff in the Kasilian Catchment 
by applying these hybrid models. 
While the integration of conceptual 
model like HEC-HMS with machine 
learning models are commonly used to 
improve model performance, limited 
research has explored their application 
in assessing climate change effects on 
water resources. 

3.	 To validate the future projections 
generated using the hybrid and LARS-
WG models with observational data 
from Google Earth Engine (GEE), 
considering the trend of change. This 
additional validation step confirmed 
the future projections to a significant 
extent by analyzing changes in annual 
rainfall, annual runoff, and annual 
sediment load based on observed data.

Material and Methods
Study area  
The Kasilian Watershed, situated in 
Mazandaran Province in northern Iran, 
spans coordinates 53°18′ to 53°30′E and 
35°58′ to 36°07′N (Figure 1). Covering 
an area of 65.7 km² above the Valikbon 
hydrometric station, the watershed flows 
northward into the Caspian Sea with 
its longest flow path extending 17.8 
kilometers. Approximately 80% of the 
area is forested, while the lower regions 
have been cleared for agriculture. The 
geology consists of shale, sandstone, 
marl, and siltstone (Hajian, 2013). The 
Sangdeh meteorological station records 
daily rainfall and temperature, and the 
Valikbon station monitors river discharge 
(Figure 1). From 1977 to 1996, the average 
annual rainfall was about 756 mm, and the 
average annual runoff from 1980 to 1996 
was 229 mm (Hajian, 2013).

 
Fig 1. Study area.
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Modeling the Rainfall-Runoff Process 
with HEC-HMS
In this study, the HEC-HMS model, 
developed by the US Army Corps 
of Engineers, was used to evaluate 
hydrological processes within the Kasilian 
Catchment. Due to limited data availability, 
the Thornthwaite method was employed 
to estimate potential evapotranspiration 
(PET) using temperature data. The study 
found that uncertainties in PET had a smaller 
impact on runoff simulations compared 
to variations arising from different types 
of General Circulation Models (GCM) or 
future climate scenarios. The HEC-HMS 
model, which utilizes 23 parameters, was 
optimized using the Nelder-Mead method. 
Initial parameter values were derived from 
geological, soil, and land use maps, as well 
as existing literature (Hajian, 2013). The 
calibration-validation process indicated 
poor performance, with Nash and Sutcliffe 
coefficients of -0.293 during the calibration 
period (September 23, 2007, to March 20, 
2018) and 0.060 during the validation 
period (September 23, 2018, to September 
22, 2021). The inadequate performance 
of HEC-HMS in estimating seasonal 
runoff volumes is attributed to seasonal 
variations in parameter values such as 
maximum infiltration rate and surface 
storage. To achieve accurate estimations, 
seasonal optimization might be required; 
however, the lumped HEC-HMS model 
cannot accommodate such adjustments, 

thus limiting its accuracy in simulating 
seasonal rainfall-runoff dynamics.

Hybrid modelling approach (Integrating 
machine learning (ML) with HEC-HMS 
conceptual model)
Improving the precision of runoff 
predictions can be achieved by combining 
conceptual hydrological models with 
machine learning (ML) techniques. 
Methods such as artificial neural networks 
(ANN), gene expression programming 
(GEP), Support Vector Machines (SVM), 
and the Adaptive Neuro-Fuzzy Inference 
System (ANFIS) offer powerful tools for 
refining forecast accuracy. Incorporating 
streamflow estimates from conceptual 
models as input for ML algorithms 
greatly enhances runoff forecasting 
precision. Research by Farfan et al., 
(2020) and Hitokoto & Sakuraba (2020) 
has demonstrated the effectiveness of this 
method, leading to significantly improved 
streamflow predictions. These findings 
highlight the advantages of integrating 
conceptual models with ML techniques 
for more accurate and dependable runoff 
estimations. These studies underscore the 
potential of combining conceptual models 
with ML techniques for more precise 
and reliable runoff predictions. The ML 
methods use discharge estimates from 
HEC-HMS (Qt), along with estimates 
from one-day (Qt-1) and two-day (Qt-2) lags, 
representing previous days’ discharge. As 
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highlighted in Table 1, the integration of 
SVM with HEC-HMS outperformed other 
hybrid models and the standalone HEC-
HMS model. Nonetheless, the impact of 

climate change on runoff was examined 
across all hybrid models, regardless of 
their individual performance.

Integration HEC HMS & 

ANN (3,3,1) with Tansig 
activation function 

Integration 
HEC HMS & 

GEP 

Integration HEC 
HMS & SVM with 

RBF kernel and 
gamma=10 and 𝜎𝜎2 = 

0.2 

Integration 
HEC HMS & 

ANFIS 

NSE NSE NSE NSE NSE NSE NSE NSE 

train test train test train test train test 

0.253 0.11 0.261 0.153 0.514 0.072 0.16 0.146 

 

Table 1. The performance evaluation of different hybrid models.

Artificial Neural Network (ANN)
Complex biological systems, with their 
intricate networks of interconnected 
processing units, demonstrate remarkable 
capabilities in information processing and 
pattern recognition. Individual processing 
units, while limited in their computational 
capacity, collectively engage in 
sophisticated tasks. These systems learn 
from their environment and establish 
connections that facilitate information flow 
through input pathways, processing stages, 
and output pathways. Artificial Neural 
Networks (ANNs) are computational 
models inspired by the architecture of 
such biological systems. They mimic the 
interconnected network of processing 
units for a range of tasks, including 
classification, pattern recognition, and 
regression. In ANNs, inputs are analogous 
to the input pathways, connection weights 
to the strength of inter-unit connections, 
activation functions to the influence of the 

processing units, and outputs to the output 
pathways.
ANNs typically comprise interconnected 
layers of artificial neurons. A crucial 
feature is the inclusion of hidden layers 
positioned between the input and output 
layers. These hidden layers enable ANNs to 
capture complex non-linear relationships 
and patterns within the data, functioning 
through multiple processing stages. 
Each artificial neuron is a mathematical 
construct involving inputs, associated 
weights, a bias term, an activation function, 
and an output. Mathematically, the output 
of a single neuron can be expressed as

)1(

Where  is the output of the th neuron,  is 
the th input to the neuron.  is the weight 
connecting the th input to the th neuron,  
is the bias term of the th neuron neuron, 
and  is the number of inputs to the neuron. 
The activation function  introduces non-

𝑦𝑦𝑗𝑗 = 𝑓𝑓 (∑𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑗𝑗

𝑛𝑛

𝑖𝑖=1

) 
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linearity into the model, allowing ANNs 
to model complex mappings that are not 
linearly separable (Glorot et al. 2010).
ANNs are particularly well-suited for 
regression tasks, which involve the 
prediction of continuous-valued outputs 
and the modeling of intricate input-output 
relationships, rendering them invaluable 
across various practical domains. Among 
different ANN architectures, feed-forward 
backpropagation networks, optimized 
with the Levenberg-Marquardt algorithm, 
have demonstrated effective training 
performance, making them widely 
applicable. 
This study utilizes a feed-forward 
backpropagation artificial neural network 
(ANN) model, with weight optimization 
achieved through the Levenberg-
Marquardt algorithm. In many nonlinear 
problems, a single hidden layer is often 
sufficient to achieve reliable results. 
Increasing the number of hidden layers 
beyond two generally does not lead to 
significant performance improvements 
and may introduce issues like overfitting or 
vanishing gradients (Pashazadeh & Javan, 
2019; Kisi et al., 2013). In this study, after 
evaluating various ANN configurations, 
it was found that a single hidden layer 
offered the best performance. Specifically, 
the Tansig activation function with three 
neurons in the hidden layer produced 
optimal results. The final optimal ANN 
architecture for investigating climate 

change impacts was determined to be 
ANN (3,3,1), comprising three input 
neurons, three hidden layer neurons, and 
one output neuron (Table 1). The ANN 
model, combined with a calibrated HEC-
HMS model, was trained and tested with 
different configurations. However, the 
study does not detail the results for other 
configurations, such as varying activation 
functions and different numbers of hidden 
layer neurons.

Gene Expression Programming (GEP)
Gene Expression Programming (GEP) 
extends traditional evolutionary algorithms 
by representing solutions as expression 
trees. These expression trees offer a 
transparent and mathematically explicit 
relationship between inputs and outputs. 
This characteristic of clarity makes GEP 
particularly valuable for applications such 
as runoff prediction, where interpretability 
of the model is a crucial requirement. 
The GEP process commences with the 
definition of a fitness function. 
In Gene Expression Programming (GEP) 
modeling, the initial step involves 
selecting an appropriate fitness function 
(Kisi et al., 2013). This study employed 
the Root Mean Square Error (RMSE) as 
the fitness function, which guided the 
evolutionary process of the expression 
trees by evaluating the differences 
between predicted and observed values. 
Various functional and terminal nodes 
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were utilized to construct the expression 
trees. The default functions provided by 
GeneXpro were used, including addition, 
subtraction, multiplication, division, 
power, square root, exponential, natural 
logarithm, absolute value, inverse, cube 
root, sine, cosine, tangent, cotangent, 
cosecant, secant, arcsine, arccosine, 
arctangent, arc cotangent, arc cosecant, 
arc secant, hyperbolic tangent, and other 
linking functions. These functions are 
combined to generate equations that relate 
input features to the target variables. The 
general form of a GEP-derived equation 
can be represented as:

)2(

Here  is the output variable, ​ represents 
the th functional node, ​ is the coefficient 
associated with the j-th functional node,  is 
the vector of input variables, and  is the 
number of genes in the model. 
This example illustrates how GEP integrates 
both linear and nonlinear relationships 
and domain-specific information into a 
predictive model. The structure of these 
equations can help to understand the 
relationships learned between the input 
and output variables. 
A key advantage of combing HEC-HMS 
with Gene Expression Programming 
(GEP) is GEP’s ability to derive explicit 
mathematical relationships between input 
and output variables—something that 
traditional models like ANN and ANFIS 

often lack (Kisi et al., 2013). The GEP-
derived expression formulated in this 
study for the model presented in Table 1 is:

)3(

Here, d0 denotes the discharge estimates 
from HEC-HMS at time t (Qt), and d2 refers 
to discharge estimates from HEC-HMS 
two days prior (Qt-2). The genetic operators 
utilized for the HEC-HMS and GEP 
integration, as detailed in Table 1, are as 
follows: chromosome count: 30, head size: 
7, gene count: 3, linking function: addition, 
fitness function: RMSE, Mutation rate: 
0.00138, inversion rate: 0.00546.

Support Vector Machine (SVM) 
Support Vector Machines (SVMs) are 
powerful supervised learning algorithms 
that have been widely applied in 
hydrological modeling due to their capacity 
to handle nonlinear relationships and high-
dimensional datasets (Mountrakis et al., 
2011). The fundamental principle of SVMs 
involves identifying an optimal hyperplane 
that separates data points of different 
classes (or, in the case of regression, 
accurately models continuous outputs) 
by maximizing the margin between them. 
For regression tasks, the SVM algorithm 
employs the concept of ε-insensitive loss, 
focusing primarily on predictions that 

𝑦𝑦 =∑𝑐𝑐𝑗𝑗𝑓𝑓𝑗𝑗(𝑋𝑋)
𝑔𝑔

𝑗𝑗=1
 

𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐(√𝑑𝑑2
3 − 𝑑𝑑0 − 1.32938895082628)))   + (

(𝑑𝑑2 − 𝑑𝑑0) × 𝑑𝑑0 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(−7.12454252754295)
cos (cos(𝑑𝑑2)) )

+ ( 1
tan (√𝑒𝑒1.34469875637074 − 𝑑𝑑0 − 1

59.299337086763 − (−7.57133701590014))
) 

𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐(√𝑑𝑑2
3 − 𝑑𝑑0 − 1.32938895082628)))   + (

(𝑑𝑑2 − 𝑑𝑑0) × 𝑑𝑑0 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(−7.12454252754295)
cos (cos(𝑑𝑑2)) )

+ ( 1
tan (√𝑒𝑒1.34469875637074 − 𝑑𝑑0 − 1

59.299337086763 − (−7.57133701590014))
) 

𝑦𝑦 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐(√𝑑𝑑2
3 − 𝑑𝑑0 − 1.32938895082628)))   + (

(𝑑𝑑2 − 𝑑𝑑0) × 𝑑𝑑0 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(−7.12454252754295)
cos (cos(𝑑𝑑2)) )

+ ( 1
tan (√𝑒𝑒1.34469875637074 − 𝑑𝑑0 − 1

59.299337086763 − (−7.57133701590014))
) 
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deviate from actual values by more than a 
specified tolerance, ε (Smola et al., 2004). 
This approach allows for more robust and 
generalized model predictions. For an 
input vector x and corresponding output 
y, the SVM regression function can be 
represented as:

(4)

Where  represents the support vector 
coefficients,  is the kernel function that 
defines the similarity between the input 
vector  and the support vectors ​,  is the 
number of support vectors, and  is the bias 
term.
The kernel function, , is a critical 
component of SVM, enabling it to map 
data into higher-dimensional spaces to 
capture complex nonlinearities. In this 
study, the Radial Basis Function (RBF) 
kernel was primarily utilized, alongside 
linear and polynomial kernels. The RBF 
kernel, also known as Gaussian kernel, is 
defined as:

(5)

Where  is the kernel parameter that controls 
the width of the Gaussian function, and 
consequently affects the influence of each 
support vector.
Parameter optimization is crucial to the 
performance of SVM models. This includes 
optimizing the penalty parameter, which 
controls the balance between minimizing 

training error and maximizing the margin, 
and the kernel-specific parameters, such as  
for the RBF kernel and the degree of the 
polynomial for the polynomial kernel. 
In this study, linear kernel, polynomial 
kernel, and RBF kernel were used in SVM 
integration with the HEC-HMS model. 
The gamma parameter (γ) was optimized 
through a systematic trial-and-error 
process for all kernels, with γ values tested 
over a range of {10⁻³, 10⁻², 10⁻¹, 1, 10, 20, 
50, 100}. An additional sigma squared 
parameter (σ²) for the RBF kernel was also 
determined through a similar trial-and-error 
process, with σ² varied in steps including 
{0.1, 0.2, 0.3, 0.4, ..., 10}. Specifically, 
the RBF kernel with γ = 10 and σ² = 0.2 
provided the best results in terms of the 
NSE coefficient (Table 1). The selected 
values minimized the validation error and 
achieved a good balance between model 
complexity and generalization, thereby 
optimizing the model’s performance. The 
SVM model was configured for function 
approximation (type f), as shown in Table 
1.

Adaptive Neuro-Fuzzy Inference System 
(ANFIS) 
The Adaptive Neuro-Fuzzy Inference 
System (ANFIS) is a hybrid computational 
model that combines the strengths of 
fuzzy logic and neural networks. This 
integration makes ANFIS particularly 
effective for modeling nonlinear and 

𝑦𝑦(𝑥𝑥) =∑𝛼𝛼𝑖𝑖𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) + 𝑏𝑏
𝑁𝑁

𝑖𝑖=1
 

𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = exp(−𝛾𝛾 ∥ 𝑥𝑥 − 𝑥𝑥𝑖𝑖 ∥2) 
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complex relationships, such as those 
commonly found in hydrology (Fahimi et 
al. 2017). ANFIS utilizes fuzzy IF-THEN 
rules to mimic human-like reasoning and 
refines these rules through neural network 
training techniques to optimize predictive 
performance. As a result, the model is 
both interpretable, due to the fuzzy logic 
component, and capable of learning 
complex patterns, thanks to the neural 
network component.
The ANFIS model is based on a Sugeno-
type fuzzy inference system, where the 
output  is a linear combination of input 
variables ​ within each fuzzy rule. A typical 
fuzzy IF-THEN rule in ANFIS can be 
expressed as:

)6(
IF  is  AND  is  ... AND  is  THEN

Where   represents the input variables,  
are the membership functions (MFs) 
associated with each input variable,  is the 
output variable, and  are the consequent 
parameters.
The membership functions (MFs) quantify 
the degree to which each input variable 
belongs to a particular fuzzy set. These 
functions, such as Gaussian or Generalized 
Bell (GBellMF) functions, mathematically 
define the degree of membership. The 
mathematical form of the Generalized Bell 
membership function (GBellMF) is:

)7(

Where a, b, and c are parameters that 
control the shape of the membership 
function, and  represents the degree of 
membership of  in the fuzzy set . Training 
ANFIS involves optimizing the parameters 
of the membership functions (a, b, c) and 
the consequent parameters (). A hybrid 
optimization method is typically used 
to refine these parameters, combining 
gradient descent to adjust the membership 
function parameters and least squares 
estimation to determine the consequent 
parameters. 
In this study, an ANFIS model was trained 
and tested using a hybrid optimization 
method with three input membership 
functions (MFs) set to the GBellMF type 
and a linear output MF type (Table 1). The 
use of multiple membership functions 
allows the model to capture a wide range 
of input variable behaviors. The GBellMF 
type has been shown to perform well in 
these contexts.

Future climate scenario projections
LARS-WG was selected for its excellent 
performance and ability to downscale 
GCM outputs for the Sangdeh station 
area. The tool’s effectiveness was assessed 
by replicating observed daily data from 
1985 to 2005 and producing 300 years 
of synthetic data, which mirrored the 
statistical properties of the observed 
data. LARS-WG then generated daily 
datasets for six models (ACCESS-

𝑦𝑦 =  𝑝𝑝0  + 𝑝𝑝1𝑥𝑥1 + 𝑝𝑝2𝑥𝑥2 + ⋯ + 𝑝𝑝𝑛𝑛𝑥𝑥𝑛𝑛 

𝜇𝜇𝐴𝐴(𝑥𝑥) =
1

1 + |𝑥𝑥 − 𝑐𝑐
𝑎𝑎 |

2𝑏𝑏 
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ESM1-5, CNRM-CM6-1, GFDL-ESM4, 
HADGEM3-GC31-LL, MPI-ESM1-2-LR, 
MRI-ESM2-0) under the SSP585 scenario 
for the periods 2031-2050 and 2051-2070. 
This scenario is appropriate for Iran due to 
the nation’s high fossil fuel consumption 
and slow transition to renewable energy, 
leading to projections of more extreme 
weather events (Horanyi , 2023). These 
climate data allow for the comparison of 
future runoff conditions with data recorded 
from 2007-2018.

Results and discussion
Future Projections and Managing 
Uncertainty from Various Climate 
Model Forecasts
Climate models vary in their predictions of 
rainfall and runoff patterns. For example, 
some models within the LARS-WG 
framework project an increase in mean 
annual rainfall in certain areas, while 
others foresee a decrease in those same 
regions (Semenov et al. 1998). Utilizing 
a range of climate models is essential 
for accurate climate change impact 
assessments. To illustrate the uncertainty 
in these predictions, two box plots were 
created using future mean annual values 
of climatic variables (rainfall) and 
hydrological variables (runoff) from all 
General Circulation Models (GCMs). 
These future values are then compared 
with historical data. The box plots show 
the 25th and 75th percentiles, the median 

(50th percentile), and the minimum and 
maximum values (Semenov & Shewry, 
2011). Figures 2 and 3 display the annual 
changes in rainfall and runoff for two 
future periods.
Throughout the calibration period from 
2007 to 2018, the mean annual rainfall was 
788 mm. When integrating HEC-HMS 
with ANN, GEP, ANFIS, and SVM, the 
mean annual runoff values were 174.23 
mm, 183.29 mm, 164.62 mm, and 169.79 
mm, respectively. The projected annual 
rainfall shows an increasing trend over 
the coming decades. From the calibration 
period, where the mean annual rainfall 
was 788 mm, there is a projected increase 
to a median annual rainfall of 807.4 mm 
in 2031-2051, representing a 2.46% rise. 
This trend continues, with the median 
annual rainfall expected to reach 834.9 
mm in 2051-2070, marking a 5.95% 
increase from the calibration period. The 
projected median annual runoff using 
the integration of HEC-HMS with SVM 
shows a decreasing trend over the coming 
decades. For the period from 2031-2051, 
the median annual runoff is expected to be 
163.81 mm, representing a 3.53% decrease 
from the calibration period’s mean of 
169.79 mm. In the period from 2051-2070, 
the median annual runoff is projected to 
rise slightly to 167.61 mm, which is a 
1.28% decrease from the calibration period. 
It is crucial to recognize that integrating 
HEC-HMS with ANFIS, ANN, and GEP 
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models shows a projected decline in runoff 
compared to the calibration period. These 
trends indicate a decrease in annual runoff, 
highlighting the necessity for adaptive 
water management strategies to address 
potential variations in water availability 
(Figure. 2 and 3). Increased temperatures 
and higher evapotranspiration rates are 
anticipated to further lower median annual 
runoff.
The IPCC Sixth Assessment Report 
(2023) underscores that anthropogenic 
global warming of 1.1°C has precipitated 
unprecedented alterations in Earth’s 

climate, manifesting as more extreme 
weather events and heightened rainfall 
in numerous regions. The report stresses 
that each additional 0.5°C rise in global 
temperature will trigger more frequent and 
intense heat extremes, heavy rainfall, and 
regional droughts. Similarly, Ripple et al. 
(2024) point out that escalating greenhouse 
gas emissions are driving more extreme 
weather events, with human-induced 
carbon dioxide emissions being the 
principal contributors to climate change, 
resulting in increased rainfall and more 
frequent extreme weather phenomena.
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Fig 2. Box plots created from the average annual rainfall data derived from various climate 
models for the SSP585 scenario and projected future period.
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models for the SSP585 scenario and projected future period.
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Google Earth Engine analysis to 
investigate the impact of climate change 
on rainfall and runoff
Over the past decade, extensive research 
has highlighted the effective use of remote 
sensing and the Google Earth Engine 
(GEE) platform for runoff and flood risk 
calculations. Studies by Yousefi et al. 
(2022 & 2024) and Tiwari et al. (2020) 
underscore GEE’s capability in estimating 
runoff, sediment, and mapping flood 
inundation areas.
Additionally, we utilized Google Earth 
Engine to analyze climate change impacts 
using observational data, compensating for 
the incomplete datasets from the Valikbon 

Hydrometric Station and the Sangdeh 
Meteorological Station.
This study utilized Google Earth Engine 
to analyze annual precipitation trends 
using the CHIRPS dataset. We centered 
the region of interest (Kasilain catchment) 
on the map and aggregated daily CHIRPS 
precipitation data into annual sums for 
the years 1981 to 2023. The mean annual 
precipitation for the Kasilain catchment 
can be calculated by averaging these 
annual sums. The resulting data was 
visualized with a chart, depicting year-to-
year variations in annual precipitation and 
providing insights into long-term climate 
trends and variability (Figure 4).

 Fig 4. Annual Precipitation in the Kasilian catchment analyzed using Google Earth Engine, 
blue line: Annual precipitation data points, Red dashed line: Trend line indicating overall 

precipitation trend

A different code in Google Earth Engine 
(GEE) was used to analyze and visualize 
annual runoff data for the Kasilian 
catchment from 1981 to 2023, utilizing 
the IDAHO_EPSCOR/TERRACLIMATE 
dataset. Runoff data is filtered by spatial 

and temporal bounds, selecting only the 
runoff (‘ro’) band. The code then calculates 
annual runoff by summing the monthly 
runoff for each year and creates an image 
collection with each year’s total runoff. 
This data is visualized through a time series 
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chart, plotting annual runoff over time and 
including a trendline to highlight long-term 
patterns. The chart, titled “Annual runoff 
Kasilian catchment,” displays years on the 
x-axis and runoff values in millimeters on 

the y-axis, providing valuable insights into 
the hydrological behavior and trends of 
the Kasilian catchment over four decades 
(Figure 5).

 
Fig 5. Annual runoff in the Kasilian catchment analyzed using Google Earth Engine, blue 

line: Annual runoff data points, Red dashed line: Trend line indicating overall runoff trend

A Google Earth Engine code visualizes 
annual Potential Evapotranspiration (PET) 
for the Kasilian catchment from 2000 to 
2023 (Figure 6). This code centers the map 
on the catchment, specifies the time range, 
retrieves the MODIS PET product, and 
calculates the annual sum of PET. It then 
generates a time series chart of annual PET 
values, including axis titles and a trend line. 
Unfortunately, the MODIS PET data does 
not extend before 2000 but continues to 
be updated periodically up to the present. 
This visualization helps monitor changes 
in annual PET over time for the Kasilian 
catchment. 

Sediment load and soil loss in Kasilian 
catchment

The Revised Universal Soil Loss 
Equation (RUSLE) is a highly used 
model demonstrating the connection 
between rainfall and soil erosion. In this 
equation (Eq. 8), R signifies the rainfall 
erosivity factor, K represents the soil 
erodibility factor, LS is the slope length 
and steepness factor (dimensionless), C 
denotes the cover management factor, P is 
the support practice factor (ranging from 
0 to 1), and A represents the estimated 
soil loss (ton·hectare-1·annum-1) (Islam 
2022, Benavidez et al. 2018, Sakhraoui & 
Hasbaia 2023).
It is important to note that various formulas 
from Islam (2022), Benavidez et al. (2018), 
and Sakhraoui & Hasbaia (2023) were 
utilized to estimate the C factor, K factor, R 
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factor, and LS factor in order to determine 
the actual value of mean sediment load 
for the Kasilian catchment. Ultimately, 
equations 10 to 15 were identified as the 
most accurate for estimating the true mean 
sediment load of the Kasilian catchment.

)8(

The sediment delivery ratio (SDR) 
quantifies the proportion of eroded soil 
that is carried away from a specific land 
area over a certain period. This concept 
is mathematically represented as (Hajian 
2013):

)9(

Rainfall factor (R): 
)10(

MFI: the Modified Fournier Index; Pi: 
the monthly precipitation; P: the annual 

precipitation; 
The R factor is calculated as:

)11(
Soil factor (K):
The K factor was determined using 
Equation 12:

)12(

where SAN represents the percentage of 
sand, SIL indicates the percentage of silt, 
and CLA denotes the percentage of clay.

LS factor (LS):
The LS factor was determined using 
Equation 13 and serves as an accelerating 
factor for rainfall erosion:

)13(

l: slope length (m)
s: slope steepness (%)

 
Fig 6. Annual potential evapotranspiration in the Kasilian catchment analyzed using Google 
Earth Engine, blue line: Annual potential evapotranspiration data points, Red dashed line: 

Trend line indicating overall potential evapotranspiration trend

𝐴𝐴 = 𝑅𝑅 × 𝐾𝐾 × 𝐿𝐿𝐿𝐿 × 𝐶𝐶 × 𝑃𝑃 

𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
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𝑀𝑀𝑀𝑀𝑀𝑀 =  ∑ 𝑃𝑃𝐼𝐼
2

𝑝𝑝

12

𝐼𝐼=1
 

𝑅𝑅 = 0.07397 × 𝑀𝑀𝑀𝑀𝑀𝑀1.847 

𝐾𝐾 = [0.2 + 0.3 × 𝑒𝑒𝑒𝑒𝑒𝑒 − 0.0256 × 𝑆𝑆𝑆𝑆𝑆𝑆 × (1 − 𝑆𝑆𝑆𝑆𝑆𝑆
100) × [1 −  0.25 × 𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶 + exp(3.72 − 2.95 × 𝐶𝐶𝐶𝐶𝐶𝐶)] 

𝐾𝐾 = [0.2 + 0.3 × 𝑒𝑒𝑒𝑒𝑒𝑒 − 0.0256 × 𝑆𝑆𝑆𝑆𝑆𝑆 × (1 − 𝑆𝑆𝑆𝑆𝑆𝑆
100) × [1 −  0.25 × 𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶 + exp(3.72 − 2.95 × 𝐶𝐶𝐶𝐶𝐶𝐶)] 

𝐿𝐿𝐿𝐿 = ( 𝑙𝑙
22)

0.5
× (0.065 + 0.045𝑠𝑠 + 0.0065𝑠𝑠2) 
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Cover management factor (C):
This relates to cover management, 
calculated using the Normalized Difference 
Vegetation Index (NDVI) (Equation 14):

)14(

NIR denotes the reflectance value in the 
near-infrared band, while RED indicates 
the reflectance value in the red band.
Equation 15 was utilized to determine the 
C factor, which is dependent on NDVI.

)15(

This methodology utilizes various satellite 
datasets to derive the factors of the Revised 
Universal Soil Loss Equation (RUSLE). 
Specifically, the C factor is obtained 
from MODIS NDVI data covering the 
period from January 1, 2000, to December 
31, 2023. The LS factor is calculated 
using SRTM 30-meter Digital Elevation 
Model (DEM) data. Soil property data 
from OpenLandMap is used to estimate 
the K factor. Additionally, the CHIRPS 
daily precipitation dataset, spanning from 

January 1, 2000, to December 31, 2023, 
is employed to determine the R factor. 
By integrating these datasets with the 
appropriate formulas, a comprehensive 
model for estimating soil erosion is 
developed. The sediment load analysis is 
limited to the period from 2000 to 2022 due 
to the availability of NDVI data from the 
MODIS sensor (MODIS/006/MOD13A2), 
which was launched on December 18, 
1999 (Figure 7). Therefore, prior to 2000, 
NDVI data necessary for estimating the C 
factor was unavailable.
Considering the sediment delivery ratio 
(SDR) of the Kasilian catchment obtained 
as 0.763 from Hajian (2013), the estimated 
mean annual sediment load of the Kasilian 
catchment using GEE (631.667 t km⁻² yr⁻¹) 
closely matched the observed value for the 
Talar catchment (532 t km⁻² yr⁻¹), of which 
Kasilian is a subcatchment. Therefore, the 
sediment load derived from GEE seems 
to more accurately reflect the sediment 
load conditions in the Kasilian catchment 
(Hajian, 2013). 

NDVI = (NIR − 𝑅𝑅𝑅𝑅𝑅𝑅)
(NIR + RED) 

C factor = e
−2NDVI
1−NDVI  

 Fig 7. Annual sediment load in the Kasilian catchment analyzed using Google Earth Engine, 
blue line: Annual sediment load data points, Red dashed line: Trend line indicating overall 

sediment load trend
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The increase in extreme rainfall events 
has led to higher annual rainfall, while 
rising temperatures and greater annual 
potential evapotranspiration have reduced 
annual runoff. This reduction in runoff 
has decreased sediment load due to the 
diminished capacity of streams to transport 
sediment. From 1981 to 2023, annual 
rainfall has increased, but annual runoff 
has decreased, as shown in Figures 4 and 
5, consistent with Figures 2 and 3. The 
increase in rainfall enhances soil moisture, 
promotes vegetation growth, stabilizes the 
soil, reduces erosion, and leads to greater 
infiltration, which decreases erosion and 
sedimentation rates. Despite the rise in 
rainfall, the overall impact is a complex 
interplay of factors affecting hydrological 
and sedimentation processes in the 
catchment area.
Research by Cho et al. (2011) and Bae et 
al. (2008) shows that annual precipitation 
and mean air temperature significantly 
impact annual runoff. Higher temperatures 
increase evapotranspiration, reducing 
runoff despite higher precipitation. This 
underscores the necessity to consider 
temperature effects in water resource 
management and climate adaptation 
strategies. Future projections indicate 
increased rainfall but decreased runoff due 
to heightened evapotranspiration, stressing 
the need for integrating these climatic 
changes into water management strategies.

Conclusions
The integration of Support Vector Machine 
(SVM) and Hydrologic Engineering 
Center’s Hydrologic Modeling System 
(HEC-HMS) models has shown superior 
performance over other hybrid models 
in simulating rainfall-runoff processes. 
Despite this, all hybrid models were 
used to evaluate the impact of climate 
change on runoff. Combining stream flow 
forecasts from conceptual models with 
machine learning techniques like ANN, 
GEP, SVM, and ANFIS improves runoff 
prediction accuracy and is highly effective 
for assessing the impacts of climate 
change on water resources. In the Kasilian 
Catchment and northern Iran, climate 
change is anticipated to result in more 
extreme rainfall events and increased 
annual rainfall. However, rising annual 
evapotranspiration rates are expected to 
decrease annual runoff. The increase in 
mean rainfall is likely driven by these 
extreme events. The annual sediment load 
likely decreased due to reduced runoff. 
This reduction in runoff diminished the 
ability of the streams to transport sediment, 
leading to lower sediment load. Observed 
data from the Google Earth Engine 
platform showed an increase in annual 
rainfall and a decrease in annual runoff, 
consistent with future analysis results 
using hybrid models and LARS-WG.
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